Presentación | Participantes | Bibliografía (DML-E) | Bibliografía adicional | Enlaces de interés | Otros proyectos DML | Ayuda  
INICIO | 03 de marzo de 2024

On Witt rings of function fields of real analytic surfaces and curves.

Título inglés On Witt rings of function fields of real analytic surfaces and curves.
Título español Anillos Witt de campos de funciones de superficies y curvas analíticas reales.
Autor/es Jaworski, Piotr
Organización Inst. Math. Univ. Warsaw, Varsovia, Polonia
Revista 0214-3577
Publicación 1997, 10 (Supl.): 153-171, 17 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés Let V be a paracompact connected real analytic manifold of dimension 1 or 2, i.e. a smooth curve or surface. We consider it as a subset of some complex analytic manifold VC of the same dimension. Moreover by a prime divisor of V we shall mean the irreducible germ along V of a codimension one subvariety of VC which is an invariant of the complex conjugation. This notion is independent of the choice of the complexification VC. In the one-dimensional case prime divisors are just points, in the two-dimensional analytic curves or elliptic points (intersections of two conjugated complex analytic curves). Every such divisor induces a discrete valuation on the field M of meromorphic functions on V ?the order of the zero or minus the order of the pole of the function. Therefore it induces the so called residue homomorphisms (first and second) of the Witt group of the field M to the Witt group of the residue field? the function field of the divisor. The main goal of this paper is to show that the intersection of kernels of all second residue homomorphisms associated to prime divisors is isomorphic to the Witt group of the Riemannian bundles on V. As an example of an application of this result we provide the new proof of the Artin-Lang property for one and two dimensional real analytic manifolds (both compact and noncompact), which is neither based on the description of all possible orderings of the field of meromorphic functions nor on the compactification of the variety.
Clasificación UNESCO 120105 ; 120210
Palabras clave español Teoría de anillos ; Anillos de funciones ; Funciones analíticas ; Curvas ; Superficies ; Funciones reales
Código MathReviews MR1485297
Código Z-Math Zbl 0894.11016
Icono pdf Acceso al artículo completo
Equipo DML-E
Instituto de Ciencias Matemáticas (ICMAT - CSIC)