Carleson measures, trees, extrapolation, and T(b) theorems.

Título inglés Carleson measures, trees, extrapolation, and T(b) theorems.
Título español Medidas de Carleson, árboles, extrapolación y teoremas T(b).
Autor/es Auscher, Pascal ; Hofmann, Steve ; Muscalu, Camil ; Tao, Terence ; Thiele, Christoph
Organización Lab. Amiénois Math. Fond. Appl. (LAMFA) Fac. Math. Informat. Univ. Picardie-Jules Verne, Amiens, Francia;Math. Dep. Univ. Missouri, Columbia (Missouri), Estados Unidos;Dep. Math. UCLA, Los Angeles (California), Estados Unidos
Revista 0214-1493
Publicación 2002, 46 (2): 257-325, 54 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés The theory of Carleson measures, stopping time arguments, and atomic decompositions has been well-established in harmonic analysis. More recent is the theory of phase space analysis from the point of view of wave packets on tiles, tree selection algorithms, and tree size estimates. The purpose of this paper is to demonstrate that the two theories are in fact closely related, by taking existing results and reproving them in a unified setting. In particular we give a dyadic version of extrapolation for Carleson measures, as well as a two-sided local dyadic T(b) theorem which generalizes earlier T(b) theorems of David, Journé, Semmes, and Christ.
Clasificación UNESCO 120213
Palabras clave español Análisis de Fourier ; Integrales singulares ; Operadores de Calderón-Zygmund ; Operadores maximales ; Ondículas ; Extrapolación ; Medidas de Carleson
Código MathReviews MR1934198
Icono pdf Acceso al artículo completo