Spectral factorization of measurable rectangular matrix functions and the vector-valued Riemann problem.

Título inglés Spectral factorization of measurable rectangular matrix functions and the vector-valued Riemann problem.
Título español Factorización espectral de funciones matriciales rectangulares medibles y el problema de Riemann valuado con vectores.
Autor/es Rakowski, Marek ; Spitkovsky, Ilya
Organización Dep. Mat. Ohio State Univ., Columbus (Ohio), Estados Unidos;Dep. Math. Coll. William and Mary, Williamsburg (Virginia), Estados Unidos
Revista 0213-2230
Publicación 1996, 12 (3): 669-696, 14 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés We define spectral factorization in Lp (or a generalized Wiener-Hopf factorization) of a measurable singular matrix function on a simple closed rectifiable contour Γ. Such factorization has the same uniqueness properties as in the nonsingular case. We discuss basic properties of the vector valued Riemann problem whose coefficient takes singular values almost everywhere on Γ. In particular, we introduce defect numbers for this problem which agree with the usual defect numbers in the case of a nonsingular coefficient. Based on the Riemann problem, we obtain a necessary and sufficient condition for existence of a spectral factorization in Lp.
Clasificación UNESCO 120218 ; 120405
Palabras clave español Matrices ; Factorización ; Problema de Riemann ; Continuidad
Código MathReviews MR1435480
Código Z-Math Zbl 0869.30028
Icono pdf Acceso al artículo completo