UN MODELO PARA VALIDAR PRODUCTOS EN UN PROCESO DE COMPRA-VENTA

M. SÁNCHEZ GARCÍA y C. GONZÁLEZ MARTÍN
Departamento de Estadística e I.O.
Universidad de La Laguna

RESUMEN

Uno de los problemas que se plantea en los procesos de compra-venta es el de determinar el conjunto de objetos que satisfacen las necesidades de los posibles compradores. Para resolver este problema es conveniente caracterizar los productos que, potencialmente, se desean adquirir a través de un número finito de atributos. Los objetos válidos serán aquellos para los que los atributos asociados superen unos valores prefijados. Ahora bien, determinar los verdaderos valores de los atributos suele ser un proceso complejo por la pretensión comercial de mejorar de forma ficticia los productos. El presente trabajo desarrolla un modelo que permite al comprador aumentar su credibilidad respecto a los valores con que caracterizan los comerciantes sus productos. Este modelo se basa en la información que el comprador puede obtener de los vendedores. Se desarrollan dos versiones: determinista y aleatoria.

Palabras clave: Validación, Atributos, Proceso de Compra-Venta, Modelo Determinístico, Modelo Aleatorio.

Clasificación AMS: 90B99.

ABSTRACT

The problem of determine a set of objects, which are satisfying the desires of a customer, is very important in the marketable processes. To resolve this problem, is suitable choose several attributes to characterize the different objects. A object is validate if the attribute's values are greater of a set of goals which are introduced by the customer. Moreover, find the attribute's right values is a very difficult problem. It this paper, we are developped a model to validate objects. For that, we are used the trade-off information between the customer and the seller. There are two versions of this model: Deterministic and Stochastic.

Recibido, mayo 1989.
Revisado, mayo 1989.
Key words: Validation, Attributes, Buying and Selling Process, Deterministic Model, Stochastic Model.
AMS Subject Classification: 90B99.
Title: A model to validate objects in a buying and selling process.

1. INTRODUCCION

Antes de decidir la compra de algún objeto, es conveniente disponer de información sobre los productos que, estando disponibles en el mercado, satisfacen las necesidades del comprador. Precisamente, un producto será válido cuando esté a la venta y satisfaga las necesidades del cliente.

Para concretar el concepto de validez, resulta adecuado fijar un número de atributos que permitan caracterizar los productos que, potencialmente, se desean comprar. En estos términos, un producto es válido cuando el valor de cada atributo asociado supera un nivel fijado por el comprador.

Ahora bien, determinar con precisión cuáles son los valores de los atributos para un objeto cualquiera suele resultar complicado, ya que, sin duda, los vendedores pretenderán que el producto aparente mejores cualidades que las que realmente tiene. El interés comercial puede hacer que la información suministrada por los vendedores sobre los diferentes productos, resulte poco fiable. Estas consideraciones aconsejan prudencia al comprador, el cuál, para reforzarla, debe disponer de una metodología objetiva que le ayude en la determinación de la validez de un determinado producto y, al mismo tiempo, le permita minimizar el riesgo de efectuar compras inadecuadas.

Una buena metodología será, obviamente, la que proporcione al comprador destreza y habilidad suficientes para poder extraer, de los vendedores potenciales, información que permita descubrir las verdaderas características de los objetos. Persiguiendo este objetivo, en la metodología que presentamos, la información que el comprador demandará a los vendedores se concretará en los valores que asignan estos últimos a los atributos que caracterizan los objetos.

Después de estas consideraciones previas, podemos decir que el proceso de compra de cualquier objeto, se concreta en las siguientes etapas:

a) Fijar los atributos que caracterizan al objeto y las cotas inferiores que establecen su validez.
b) Identificar los valores de los atributos para objetos existentes en el mercado. Aquellos objetos cuyos valores superen a los fijados en a) serán los válidos.

c) Determinar cuál es el producto que se va a comprar.

d) Negociar con los comerciantes las condiciones económicas más ventajosas para adquirir el objeto seleccionado.

Los problemas que se presentan en los puntos c) y d) son ampliamente conocidos y están exhaustivamente estudiados (ver, por ejemplo, [2], [4] y [5]). Las técnicas de Programación Multiatributo y de Análisis de Datos son adecuadas para tratar los problemas que plantea el punto c), mientras que las técnicas de negociación y regateo unicriterio son las idóneas para resolver los problemas planteados en d). Por otro lado, el problema planteado en a) debe ser resuelto subjetivamente por el comprador.

En consecuencia, quedarían por resolver los problemas planteados en el punto b). A este cometido nos dedicamos en el presente artículo.

En el apartado 2 planteamos el problema para un producto arbitrario, proponiendo un estudio basado en la independencia de las características asociadas en los contextos determinístico y estocástico. En el apartado 3 desarrollaremos la metodología a utilizar en el caso determinístico, la cual sirve de base a los razonamientos efectuados en el apartado 4 para el estudio del caso aleatorio.

El trabajo concluye con la aplicación de las metodologías descritas previamente a dos problemas particulares.

2. PLANTEAMIENTO DEL PROBLEMA

Supongamos que el comprador caracteriza cada producto por \( n \) atributos que denotamos por \( C_1, ..., C_n \). Sean \( c_1, ..., c_n \) las cotas inferiores que debe superar un producto determinado para ser considerado válido. El problema consiste en establecer, fiable y objetivamente, qué productos del mercado son válidos.

El método que proponemos para resolver el problema, se sustenta en un intercambio de información con los comerciantes sobre los niveles que éstos asignan a los atributos. Supondremos que se solicita información a \( m \) comerciantes que denotaremos por \( CO_1, ..., CO_m \). El modelo también supone cierta la tendencia comercial de mejorar de forma ficticia los productos. Tendremos en cuenta que el tratamiento matemá-
tico dado a cada producto es idéntico y, por tanto, haremos el estudio para un solo producto.

Desarrollaremos dos modelos: Determinístico y Aleatorio.

3. CASO DETERMINISTICO

La información emitida por los comerciantes permitirá construir la tabla 1:

<table>
<thead>
<tr>
<th></th>
<th>$C_1$</th>
<th>...</th>
<th>$C_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CO_1$</td>
<td>$z_{11}$</td>
<td>...</td>
<td>$z_{1n}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>$CO_m$</td>
<td>$z_{m1}$</td>
<td>...</td>
<td>$z_{mn}$</td>
</tr>
</tbody>
</table>

siendo $z_{ij}, \forall i \in \{1, ..., m\}, \forall j \in \{1, ..., n\}$, el nivel asignado por el comerciante $i$-ésimo al atributo $j$-ésimo. Sin pérdida de generalidad, supondremos que $z_{ij} > 0$.

Sean $z_j = \min \{z_{ij} | i = 1, ..., m\}, u_{ij} = z_{ij} - z_j, \forall i \in \{1, ..., m\}, \forall j \in \{1, ..., n\}$, lo cual permite construir la tabla 2:

<table>
<thead>
<tr>
<th></th>
<th>$C_1$</th>
<th>...</th>
<th>$C_n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CO_1$</td>
<td>$u_{11}$</td>
<td>...</td>
<td>$u_{1n}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>$CO_m$</td>
<td>$u_{m1}$</td>
<td>...</td>
<td>$u_{mn}$</td>
</tr>
</tbody>
</table>

Supondremos que los atributos son independientes. Esto permitirá fijar uno de ellos, $C_j$, y realizar el estudio que, luego, se generalizará al resto.

Recordemos que, en principio, se maneja la hipótesis de que el producto mejora cuando crece el valor del atributo (el caso contrario se considerará con posterioridad).

Pretendemos, pues, encontrar el verdadero valor de $C_j$ en la seguridad de que éste no superará el nivel mínimo actual $z_j$. Por tanto, el
proceso de búsqueda se realizará disminuyendo dicho nivel dentro de un esquema de intercambio de información entre vendedores y cliente, en base a la observación del comportamiento de los vendedores dentro de ciertos márgenes razonables.

Para dirigir el proceso de búsqueda del nivel objetivo del atributo $j$-ésimo, utilizamos la siguiente función:

$$D_j(u_j) = \sum_{i \in I_j} \alpha_i \varphi_j(u_{ij}) + \zeta_j(v_j)$$ \hspace{1cm} (3.1)

con $u_j = (u_{1j}, ..., u_{mj})$, $I_j = \{i \mid u_{ij} \geq (\alpha_j - 1)z_j\}$, siendo $\alpha_j > 1$ el factor que determina el umbral de tolerancia, sobre el mínimo $z_j$, en el valor de $C_j$; $\alpha_{ij} \geq 0$, $\forall i \in \{1, ..., m\}$, $v_j = \text{cardinal } I_j$.

Además, para dar a $D_j$ su verdadero significado hemos de suponer que:

$$\varphi_j : \mathbb{R}^+ \cup \{0\} \rightarrow \mathbb{R} \text{ es estrictamente decreciente y } \varphi_j(0) = 0$$\hspace{1cm} (3.2)
$$\zeta_j : \mathbb{N} \cup \{0\} \rightarrow \mathbb{R}, \zeta_j(0) = 0, \zeta_j \leq 0 \text{ y estrictamente creciente para argumentos estrictamente positivos.}$$

Como la función $\varphi_j$ está definida sobre las diferencias entre los valores asignados por los distintos comerciantes al atributo $j$ y el mínimo de dicho atributo ($z_j$), parece claro que cuanto mayores sean estas diferencias, mayor debe ser el desfase entre las asignaciones de los comerciantes y el verdadero valor de $C_j$. Esto justifica la hipótesis de decrecimiento de las funciones $\varphi_j$.

Por otro lado, $\zeta_j$ se define sobre el número de comerciantes que asignan valores a $C_j$ que superan el umbral prefijado de antemano ($z_j$). Si contemplásemos el caso extremo en que todos los comerciantes, excepto uno, superasen el citado umbral, es lógico pensar que se ha producido un crecimiento reciente en el valor del atributo $j$-ésimo que no ha sido captado por el comerciante que ha permanecido en el mínimo. Este hecho, y otros derivados de casos similares, justifican el que las funciones $\zeta_j$ permitan menos decrecimiento cuando aumente el número de comerciantes que superan el umbral prefijado.

La búsqueda del verdadero valor de $C_j$ se realizará sumando al valor mínimo actual admitido por algún comerciante, los valores de la función (3.1). Expondremos a continuación algunos resultados de interés relativos al cálculo de esta función.
Teorema 1

∀ ϕ, ζ cumpliendo (3.2), ∃ t_j, β_{ij} ∈ ℝ tales que:

\[ D_j(u_j) = \sum_{i \in I_j} \beta_{ij} \varphi(u_{ij}) + t_j \zeta(v_j) \]

Demostración

Si hacemos \( \zeta(v_j) = t_j \zeta(v_j) \Rightarrow t_j = \frac{\zeta(v_j)}{\zeta(v_j)} \), siempre que \( v_j \neq 0 \) (en otro caso, la igualdad primera se satisface para cualquier \( t_j \), en particular para \( t_j = 0 \)).

Por tanto, en función de lo anterior se tiene:

\[ \sum_{i \in I_j} a_{ij} \varphi_j(u_{ij}) = \sum_{i \in I_j} \beta_{ij} \varphi(u_{ij}) \]

lo cual permite elegir los \( \beta_{ij} \) arbitrarios, salvo uno de ellos determinado convenientemente para que la igualdad anterior sea cierta.

Corolario

En las hipótesis del teorema anterior, ∀ \( i \in \{1, ..., m\} \), ∃ a_i, b_j ∈ ℝ tales que \( \beta_{ij} = a_i b_j \).

Demostración

De manera trivial, ya que se puede tomar los \( a_i \) arbitrarios y el \( b_j \) adecuado para que se dé la igualdad correspondiente.

En definitiva,

\[ D_j(u) = b_j \sum_{i \in I_j} a_i \varphi(u_{ij}) + t_j \zeta(v_j) \quad (3.3) \]

para \( \varphi, \zeta \) verificando (3.2), y \( a_i \) arbitrarios. Por tanto, los resultados anteriores son válidos para:

\[ a_i = 1, \; \forall i \in \{1, ..., m\} \]

\[ \varphi(u_{ij}) = -u_{ij}, \; \forall i \in \{1, ..., m\} \]

y para

\[ \zeta(v_j) = \begin{cases} -1/v_j & \text{si } v_j \neq 0 \\ 0 & \text{en otro caso} \end{cases} \]

Como consecuencia, la función que dirige el proceso de búsqueda es:

\[ D_j(u) = \begin{cases} b_j \sum_{i \in I_j} (-u_{ij}) + t_j(-1/v_j) & \text{si } v_j \neq 0 \\ b_j \sum_{i \in I_j} (-u_{ij}) & \text{en otro caso} \end{cases} \quad (3.4) \]

siendo \( b_j \) y \( t_j \) parámetros cuyos valores hay que estimar.
3.1. Estimación de $b_j$ y $t_j$

Sea $\beta_j \in [0,1]$ el porcentaje de decrecimiento permitido al atributo $C_j$ respecto de su mínimo actual. Para estimar los valores de $b_j$ y $t_j$ tendremos en cuenta el máximo decrecimiento respecto al citado mínimo, es decir $(1 - \beta_j)z_j$, y la relación que liga este último valor con el mínimo de la función $D_j$.

Por otro lado, teniendo en cuenta la definición de $x_j$, el incremento máximo permitido a los valores del atributo $C_j$ es igual a $(x_j - 1)z_j$.

Entonces, en condiciones de normalidad, es decir, cuando todos los comerciantes están dentro del margen permitido para el atributo $j$ (el segundo caso de (3.4)), el mayor valor absoluto de $D_j(u_j)$ viene dado cuando un comerciante está en el mínimo nivel y el resto en el máximo permitido $x_jz_j$. Por tanto:

\[
(1 - \beta_j)z_j = b_j(m - 1)(x_j - 1)z_j \Rightarrow \hat{b_j} = \frac{1 - \beta_j}{(m - 1)(x_j - 1)} \tag{3.5}
\]

Se iguala en la ecuación anterior el máximo decrecimiento permitido a $C_j$ con el decrecimiento que impone a dicho atributo el mayor valor absoluto de $D_j$.

Por otra parte, cuando existe algún comerciante que sobrepasa el máximo permitido (caso 1 de (3.4)), el valor absoluto máximo de $D_j(u_j)$ será alcanzado cuando un comerciante está en el mínimo ($x_j$), exactamente uno sobrepasa el máximo permitido y el resto se mantiene en dicho máximo ($x_jz_j$).

Si efectuamos el mismo razonamiento que en el caso anterior y suponemos que el decrecimiento producido debe ser el mismo, se tiene:

\[
(m - 2)(x_j - 1)z_j\hat{b_j} + t_j = (1 - \beta_j)z_j = (m - 1)b_j(x_j - 1)z_j \Rightarrow
\]

\[
\Rightarrow \hat{t_j} = \hat{b_j}(x_j - 1)z_j,
\]

Es decir:

\[
\hat{t_j} = \frac{(1 - \beta_j)z_j}{m - 1} \tag{3.6}
\]

Obsérvese que $\hat{b_j}$ es independiente del nivel mínimo $z_j$, mientras que $\hat{t_j}$ es independiente de $x_j$.

3.2. Proceso de negociación

Manejamos la hipótesis de que los datos suministrados por los comerciantes son poco fiables. Por ello, se hace necesario establecer un
proceso de negociación que esquematizaremos, para todos los atributos, en los pasos siguientes:

Paso 0  (Inicialización)
\[ \forall j \in \{1, \ldots, n\}, \text{ sean } x_j^0 \in \{1, 2\} \text{ el umbral de tolerancia inicial, } \beta_j^0 \in [0, 1[ \text{ el porcentaje de decrecimiento inicial, } e_j \text{ la cota inferior, } t_j^0 = \{1, \ldots, m_j\}, m_j = m \text{ y } e_j > 0 \text{ suficientemente pequeño. Elegir } \gamma_0 \in [0, 1[, \text{ hacer } J_0 = \{1, \ldots, n\}, k = 0 \text{ e ir al paso } 1. \]

Paso 1  (Cálculo de mínimos y regla de parada)
A partir de la tabla 1, hallar
\[ z_j^k = \min \{ z_j^k / i \in I_j^k \}, \quad \forall j \in J_k \]
Si \( \exists j \in J_k \) tal que \( z_j^k < v_j \), parar ya que el producto considerado no es válido. En otro caso, si \( k = 0 \), ir al paso 3 y si \( k > 0 \), ir al paso 2.

Paso 2  (Eliminación de atributos y regla de parada)
\[ \forall j \in J_k, \text{ tal que } z_j^{k-1} - z_j^k < e_j, \text{ hacer } J_k = J_{k-1} - \{j\} \text{. Si } J_k = \Phi, \text{ parar ya que el producto considerado es válido. En otro caso, ir al paso } 3. \]

Paso 3  (Cálculo de la tabla 2 y determinación de la función directriz de búsqueda)
Calcular \( u_{ij}^k = z_{ij}^k - z_j^k, \forall i \in I_j^k, \forall j \in J_k \). Estimar \( b_j \) y \( t_j \) y hallar \( D_j^k, \forall j \in J_k, \text{ si } k = 0 \), ir al paso 5; en otro caso, ir al paso 4.

Paso 4  (Eliminación de comerciantes)
Hallar \( I_j^k = \{i \in I_j^{k-1} / z_{ij}^k \leq z_{ij}^k + \alpha_j^k \}, \forall j \in J_k \). Ir al paso 5.

Paso 5
Hallar \( y_j^{k+1} = z_j^k + D_j^k, \forall j \in J_k \). En base a estos valores, negociar con los comerciantes una nueva tabla 1 de niveles \( z_{ij}^{k+1} \) tales que:
\[ y_j^{k+1} \leq z_{ij}^{k+1} \leq y_j^k, \quad \forall j \in J_k, \forall i \in I_j^k \]
Ir al paso 5.

Paso 6  (Modificación de los factores de tolerancia y de crecimiento)
Elegir \( \beta_j^{k+1} \in ]0, \beta_j^0[, \text{ y } x_j^{k+1} \in \{1, 2\}, \forall j \in J_k \), tales que \( (1 - \beta_j^{k+1}) \leq \gamma_k^j \text{, } \forall j \in J_k, \gamma_k \in [0, 1[, \gamma_k^j \text{. Hacer } m_j^{k+1} = \text{card } I_j^{k+1}, \forall j \in J_{k+1}, k = k + 1 \) e ir al paso 1.
Nota 1

En cada iteración, el cálculo de $D_j$ deberá hacerse teniendo presente que

$$
\hat{f}_j = \frac{1 - \beta_j}{(m^*_j - 1)(\alpha_j - 1)} \quad \text{y} \quad \hat{t}_j = \frac{(1 - \beta_j)z_j}{m^*_j - 1}
$$

Nota 2

Como ya dijimos, el proceso de negociación se ha desarrollado para el caso en que a mayores valores de los atributos corresponden mejores productos. Cuando sucede lo contrario, los niveles dados por los comerciantes serán inferiores a la cota marcada por el cliente. En este segundo supuesto, en el proceso de negociación se ha de sustituir el cálculo de los mínimos de cada atributo por el cálculo de los máximos y cambiar de signo a la función $D_j$.

Puesto que, en este caso, $\beta_j$ representa un factor de crecimiento de $C_j$ respecto del máximo actual, debe ser $\beta_j \in [1, 2]$. Al mismo tiempo, como $\alpha_j$ sirve para hallar el decremento máximo respecto al citado máximo, debe ser $\alpha_j \in [0, 1]$. Por tanto, si realizamos un razonamiento similar al efectuado más arriba, se tiene:

$$
(\beta_j - 1)z_j = (m - 1)(1 - \alpha_j)z_j \Rightarrow \hat{f}_j = \frac{\beta_j - 1}{(m - 1)(1 - \alpha_j)} \quad (3.7)
$$

Y, por otro lado:

$$
(m - 2)(1 - \alpha_j)z_j \beta_j + t_j = (\beta_j - 1)z_j = (m - 1)\beta_j(1 - \alpha_j)z_j \Rightarrow
$$

$$
\Rightarrow \hat{t}_j = \hat{f}_j(1 - \alpha_j)z_j, \quad \hat{t}_j = \frac{(\beta_j - 1)z_j}{m - 1} \quad (3.8)
$$

Se observa que las expresiones (3.7) y (3.8) coinciden con (3.5) y (3.6) si se sustituyen $\alpha_j$ y $\beta_j$ por $2 - \alpha_j'$ y $2 - \beta_j'$, respectivamente. Si se realiza este cambio, tendremos nuevamente que $\alpha_j' \in [1, 2]$ y $\beta_j' \in [0, 1]$. Por todo ello, la aplicación del algoritmo anterior se podrá hacer modificando levemente algunos pasos.

4. CASO PROBABILISTICO

En algunos supuestos resulta que al preguntar sobre los valores asignados a un atributo, los comerciantes no pueden suministrar, por causas diversas, una respuesta concreta. A pesar de ello, pretendemos que los comerciantes nos proporcionen información sobre valores
probables del atributo junto con una medida de probabilidad de dichos valores.

Para modelizar estas situaciones, supondremos que el comerciante \(i\)-ésimo proporciona información sobre el atributo \(j\)-ésimo según una variable aleatoria \(\xi_{ij}\) la cual toma un número finito, y no excesivamente grande de valores. Supondremos que dichos valores pertenecen a un retículo discreto de números reales \(\mathcal{R} = \{a + \ell d | \ell \in \mathbb{Z}\}\), con \(a, d \in \mathbb{R}, d > 0\), y que están contenidos en el intervalo \([a_{ij}, b_{ij}]\). Haremos también la hipótesis de que \(o y d\) se eligen convenientemente para que \(a_{ij}, b_{ij} \in \mathcal{R}\). Además, se supone que \(P(\xi_{ij} = a_{ij}) > 0, P(\xi_{ij} = b_{ij}) > 0\).

4.1. Proceso de negociación

Supondremos que, también en este caso, a valores mayores de los atributos corresponden mejores productos. El problema planteado se resolverá, entonces, según el esquema de negociación siguiente:

Paso 0 (Inicialización)

Sean \(a_{ij}^{0}, b_{ij}^{0}\) los valores extremos que asocia inicialmente el comerciante \(CO_{i}\) al atributo \(C_{j}\). Elegir \(x_{j}^{0}, \beta_{j}^{0}, \nu_{j} y e_{j}\) como en el caso determinístico; elegir \(\Delta_{j} > 0, e > 0 y q_{0} \in ]0, 0.3[\). Sean \(J_{0} = \{1, \ldots, n\}, I_{j}^{0} = \{1, \ldots, m\}, m_{j}^{0} = m, \forall j \in J_{0}\). Hacer \(k = 0 e ir\ al \ paso 1\).

Paso 1 (Cálculo del intervalo de mínimos de cada atributo)

Calcular el intervalo inicial de mínimos asignados por los comerciantes a cada atributo, es decir:

\[
[a_{j}, b_{j}], \quad \text{tal que} \quad a_{j} = \min_{i \in I_{j}^{0}} a_{ij}, \quad b_{j} = \min_{i \in I_{j}^{0}} b_{ij}, \quad \forall j \in J_{k}
\]

Si \(\exists j \in J_{k}\) tal que \(P([a_{j}, b_{j}] \cap -\infty, v_{j}]) < e\), parar; en otro caso, ir al paso 2.

Paso 2 (Construcción de una probabilidad sobre \([a_{j}, b_{j}]\) para cada atributo)

Sean \(\{l_{1}, \ldots, l_{t}\} = \mathcal{R} \cap [a_{j}, b_{j}], \ p_{lj}^{s} = P(\xi_{ij} = l_{s}), s = 1, \ldots, t\). Siguiendo la hipótesis inicial de que todos los comerciantes son igual de fiables, ponderamos uniformemente las probabilidades anteriores para obtener:

\[
p_{lj}^{s} = \frac{1}{m_{j}^{0}} \sum_{i=1}^{m_{j}^{0}} p_{lj}^{i}, s = 1, \ldots, t
\]
Como, en principio, \( \sum_{i=1}^{n} p_{ij}^{s} \neq 1 \), para convertir dichos valores en probabilidades, dividimos por el valor de la suma anterior y obtenemos:

\[
q_{ij}^{s} = \frac{p_{ij}^{s}}{\sum_{i=1}^{n} p_{ij}^{s}}
\]

Ir al paso 3.

**Paso 3** (Cálculo de cotas inferiores para los valores de cada atributo)

Sean \( F_{1}(z) \) la función de distribución del comerciante \( CO_{1} \) y \( F_{0}(z) \) la función de distribución correspondiente a las probabilidades \( q_{ij}^{s} \). Para \( s = l, ..., t \) y \( \forall j \in J_{k} \), sea \( z_{ij} \in \mathcal{R} \cap [a_{ij}, b_{ij}] \) tal que

\[
|F_{0}(l_{s}) - F_{1}(z_{ij})| \leq |F_{0}(l_{s}) - F_{1}(z)|, \quad \forall z \in \mathcal{R} \cap [a_{ij}, b_{ij}].
\]

Si \( z_{ij} \) no es único, se toma el mínimo.

En función de \( l_{s} \) y \( \{z_{ij} / i \in I_{j}^{s}\} \), se calcula (igual que en el proceso determinístico) el valor de la función directriz \( D_{j} \). Hallar \( h_{j}^{s} = l_{s} - D_{j} \) y

\[
\min \left\{ s_{0} / \sum_{s=1}^{n} q_{ij}^{s} \geq q_{0} \right\}.
\]

Hacer \( y_{j} = h_{j}^{s} \) y ir al paso 4.

**Paso 4** (Eliminación de comerciantes)

\( \forall j \in J_{k} \), hallar \( I_{j}^{k+1} = I_{j}^{k} - \{i \in I_{j}^{k} / P([a_{ij}, b_{ij}] \cap [a_{ij}^{k}, b_{ij}^{k}]) < e_{j}\} \). Ir al paso 5.

**Paso 5**

Si \( \forall j \in J_{k} \):

\[
P([y_{j}, y_{j} + \Delta_{j}] \cap [a_{ij}^{k}, b_{ij}^{k}]) \geq 1 - e_{j}, \quad \forall i \in I_{j}^{k+1},
\]

parar. En otro caso, ir al paso 6.

**Paso 6** (Establecimiento de nuevos niveles)

En base a las cotas inferiores calculadas en el paso 3 se pide a los comerciantes que emitan unos nuevos niveles \( a_{ij}^{k+1}, b_{ij}^{k+1} \). Elegir

\[
\beta_{j}^{k+1} \in ]\beta_{j}, 1] \quad y \quad \alpha_{j}^{k+1} \in ]1, \alpha_{j}^{k}, \quad \forall j \in \{1, ..., n\},
\]

hacer \( k = k + 1 \) e ir al paso 1.
Nota 3

Para el caso en que la tendencia de los comerciantes sea disminuir de manera ficticia los valores de algún atributo, se habrán de realizar los cambios pertinentes en el anterior algoritmo según un razonamiento similar al efectuado en la nota 2.

5. EJEMPLOS

a) Caso determinístico

Supongamos que un cliente está interesado en adquirir un microordenador caracterizado por cinco atributos. Se solicita información a cinco vendedores diferentes y con ella se construye la siguiente tabla:

<table>
<thead>
<tr>
<th>Tabla 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>co₁</td>
</tr>
<tr>
<td>co₂</td>
</tr>
<tr>
<td>co₃</td>
</tr>
<tr>
<td>co₄</td>
</tr>
<tr>
<td>co₅</td>
</tr>
</tbody>
</table>

En la tabla 5.1, los atributos segundo y tercero representan la velocidad de procesamiento en RAM, respectivamente, en forma normal y turbo y el cuarto es la duración media del disco duro de 20 MB que lleva incorporado el microordenador que se estudia. El quinto atributo se refiere a los slots de expansión de que consta el microordenador.

Proceso de negociación

La tabla 5.1, que contiene la información suministrada inicialmente por los vendedores, se puede reducir de la manera siguiente:
Observemos que, por el carácter de los atributos, los vendedores tienden a disminuir los valores del primer atributo y a aumentar los valores del resto. Por ello obtenemos:

\[ z_1^1 = 12, \quad z_2^1 = 9, \quad z_3^1 = 14, \quad z_4^1 = 4 \quad \text{y} \quad z_5^1 = 8, \]

resultando la tabla de diferencias igual a:

<table>
<thead>
<tr>
<th>(-4)</th>
<th>(1)</th>
<th>(2)</th>
<th>(1)</th>
<th>(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(2)</td>
<td>(0)</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>(-6)</td>
<td>(3)</td>
<td>(4)</td>
<td>(0)</td>
<td>(4)</td>
</tr>
<tr>
<td>(-3)</td>
<td>(0)</td>
<td>(0)</td>
<td>(3)</td>
<td>(2)</td>
</tr>
<tr>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(4)</td>
</tr>
</tbody>
</table>

**Iteración 1**

Supongamos que las cotas establecidas por el comprador son: \(V_1 = 14, V_2 = 8, V_3 = 12, V_4 = 4 \text{ y } V_5 = 8\), y que, durante el proceso de negociación, \(\gamma = 0.7\).

Usando los datos contenidos en la tabla 5.3, los comerciantes emiten unos nuevos niveles con los que se construye la tabla 5.4:
<table>
<thead>
<tr>
<th>$z_j^1$</th>
<th>12</th>
<th>9</th>
<th>14</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_j$</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$\alpha_j$</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$x_j^1 z_j^1$</td>
<td>6</td>
<td>27</td>
<td>21</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_j$</td>
<td>13</td>
<td>4</td>
<td>$-7$</td>
<td>4</td>
<td>$-3$</td>
</tr>
<tr>
<td>$4$</td>
<td>$4$</td>
<td>$2$</td>
<td>$2$</td>
<td>$2$</td>
<td>$2$</td>
</tr>
<tr>
<td>$v_j^2$</td>
<td>$61$</td>
<td>$49$</td>
<td>$5$</td>
<td>$2$</td>
<td>$2$</td>
</tr>
<tr>
<td></td>
<td>$4$</td>
<td>$4$</td>
<td>$2$</td>
<td>$2$</td>
<td>$2$</td>
</tr>
</tbody>
</table>

Notemos que

$I_1^1 = I_2^2 = I_3^3 = I_4^4 = \{1, 2, 3, 4, 5\}$, \( I_5^4 = \{1, 2, 3, 5\} \)

y

\( J_1 = \{1, 2, 3, 4, 5\} \), \( z_j^1 \geq v_j \), para \( j = 2, 4, 5 \).

Recordemos que en la iteración primaria no se elimina ningún comerciante. Por tanto, la nueva tabla de diferencias es:

<table>
<thead>
<tr>
<th></th>
<th>$-3$</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$-3$</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$-2$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

92
\textit{Iteración 2}

A partir de la información de la tabla 5.5, los vendedores suministran información para construir la tabla 5.6:

<table>
<thead>
<tr>
<th>\textbf{Tabla 5.5}</th>
<th>\textbf{Tabla 5.6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_j^2$</td>
<td>13 8 13 4 8</td>
</tr>
<tr>
<td>$\beta_j^2$</td>
<td>5 5 5 5 5</td>
</tr>
<tr>
<td>$x_j^2$</td>
<td>5 5 5 5 5</td>
</tr>
<tr>
<td>$x_j^2z_j^2$</td>
<td>$\frac{65}{6}$ 10 $\frac{65}{4}$ 5 10</td>
</tr>
<tr>
<td>$D_j$</td>
<td>$\frac{9}{8}$ $-1$ $\frac{-7}{6}$ $\frac{-2}{3}$ $-1$</td>
</tr>
<tr>
<td>$y_j^3$</td>
<td>$\frac{113}{8}$ 7 $\frac{71}{6}$ 10 $\frac{3}{3}$ 7</td>
</tr>
</tbody>
</table>

Se tiene en esta iteración:

$I_2^2 = \{1, 2, 3, 4, 5\}, \quad J_2 = \{1, 3\}$.

Como

$z_1^2 \geq 14 = v_1, \quad z_3^2 \geq 14 = v_3$

el proceso acaba con los valores de los atributos:

| 14 8 12 4 8 |

\textbf{b) Caso aleatorio}

Supongamos que un cliente desea comprar una lavadora y que está interesado en recabar información sobre cuatro características que
considera importantes. Las respuestas suministradas por cuatro vendedores permiten construir la tabla 5.7:

<table>
<thead>
<tr>
<th></th>
<th>Humedad relativa</th>
<th>Consumo agua</th>
<th>Cantidad ropa</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 10 15 20</td>
<td>60 65</td>
<td>9 11 13</td>
<td>16 18 20</td>
</tr>
<tr>
<td>Co₂</td>
<td>1 3 3 1</td>
<td>6 2</td>
<td>1 2 1</td>
<td>1 2 1</td>
</tr>
<tr>
<td></td>
<td>8 8 8 8</td>
<td>8 8</td>
<td>4 4 4</td>
<td>4 4 4</td>
</tr>
<tr>
<td></td>
<td>10 15</td>
<td>55 60 65 70</td>
<td>10</td>
<td>16 18 20</td>
</tr>
<tr>
<td>Co₂</td>
<td>1 1</td>
<td>1 3 3 1</td>
<td>1</td>
<td>3 3 2</td>
</tr>
<tr>
<td></td>
<td>2 2</td>
<td>8 8 8 8</td>
<td>1</td>
<td>8 8 8</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>60 65 70</td>
<td>10 11 12</td>
<td>18</td>
</tr>
<tr>
<td>Co₃</td>
<td></td>
<td></td>
<td>3 3 2</td>
<td>1 2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 8 8</td>
<td>4 4 4</td>
</tr>
<tr>
<td></td>
<td>15 20</td>
<td>65</td>
<td>10 11</td>
<td>16 18</td>
</tr>
<tr>
<td>Co₄</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>2 2</td>
<td>2</td>
<td>2 2</td>
<td>2 2</td>
</tr>
</tbody>
</table>

En la tabla 5.7, el primer atributo representa la humedad relativa de la ropa después del centrifugado. El segundo mide el consumo de agua (en litros) para un lavado normal, mientras que el tercero mide la cantidad de ropa (en kilogramos) que puede lavarse normalmente de cada vez. El cuarto atributo mide la duración de la lavadora (en unidades de 1/2 año). Para cada comerciante, la segunda fila contiene las probabilidades asociadas a los valores que aparecen en la primera fila.

Se observa que los comerciantes tienen tendencia a disminuir los valores de los atributos primero y segundo, mientras que tienden a aumentar los valores de los otros atributos.
Proceso de Negociación
Iteración 1
Cálculo de intervalos y probabilidades asociadas

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Intervalo</th>
<th>Probabilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[15, 20]</td>
<td>(q(15) = 19/24), (q(20) = 5/24)</td>
</tr>
<tr>
<td>2</td>
<td>[65, 70]</td>
<td>(q(65) = 16/19), (q(70) = 3/19)</td>
</tr>
<tr>
<td>3</td>
<td>[9, 10]</td>
<td>(q(9) = 1/8), (q(10) = 7/8)</td>
</tr>
<tr>
<td>4</td>
<td>[16, 18]</td>
<td>(q(16) = 5/24), (q(18) = 19/24)</td>
</tr>
</tbody>
</table>

Cálculo de los valores más «próximos» para cada comerciante

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co_1</td>
<td>15</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Co_2</td>
<td>15</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Co_3</td>
<td>15</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Co_4</td>
<td>15</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>a_j, b_j</td>
<td>15</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

Tabla de diferencias

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co_1</td>
<td>0</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>Co_2</td>
<td>0</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>Co_3</td>
<td>0</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>Co_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a_j, b_j</td>
<td>15</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

Función directriz y cotas

Tomando

\[
\beta_1 = \beta_2 = \frac{7}{4}, \quad \beta_3 = \beta_4 = \frac{1}{4}, \quad x_1 = x_2 = \frac{1}{2}, \quad x_3 = x_4 = \frac{3}{2}
\]

se calculan los valores de \(D_j\) y se obtienen las cotas:

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>190</td>
<td>535</td>
<td>590</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

95
Iteración 2

La tabla 5.8 recoge la segunda información de los comerciantes.

<table>
<thead>
<tr>
<th>Tabla 5.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad relativa</td>
</tr>
<tr>
<td>Co₁</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Co₂</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Co₃</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Co₄</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Cálculo de intervalos y probabilidades asociadas

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Intervalo</th>
<th>Probabilidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[20, 20]</td>
<td>( q(20) = 1 )</td>
</tr>
<tr>
<td>2</td>
<td>[70, 70]</td>
<td>( q(70) = 1 )</td>
</tr>
<tr>
<td>3</td>
<td>[8, 9]</td>
<td>( q(8) = \frac{4}{13}, \ q(9) = \frac{9}{13} )</td>
</tr>
<tr>
<td>4</td>
<td>[16, 16]</td>
<td>( q(16) = 1 )</td>
</tr>
</tbody>
</table>
Cálculo de los valores más «próximos» para cada comerciante

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co₁</td>
<td>20</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>Co₂</td>
<td>20</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Co₃</td>
<td>15</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Co₄</td>
<td>20</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>aᵢ, bᵢ</td>
<td>20</td>
<td>70</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla de diferencias

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co₁</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Co₂</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Co₃</td>
<td>-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Co₄</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>aᵢ, bᵢ</td>
<td>20</td>
<td>70</td>
<td>8</td>
</tr>
</tbody>
</table>

Función directriz y cotas

Tomando

\[ \beta₁^{2} = \beta₂^{2} = \frac{4}{3}, \quad \beta₃^{2} = \beta₄^{2} = \frac{2}{3}, \quad \alpha₁^{2} = \alpha₂^{2} = \frac{5}{9}, \quad \alpha₃^{2} = \alpha₄^{2} = \frac{13}{9} \]

se calculan los valores de \( D_j \) y se obtienen las cotas:

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>70</td>
<td>62</td>
<td>70</td>
</tr>
</tbody>
</table>

Iteración 3

La tercera información suministrada por los vendedores ofrece los niveles fiables del producto. Estos son:

<table>
<thead>
<tr>
<th>Atributo 1</th>
<th>Atributo 2</th>
<th>Atributo 3</th>
<th>Atributo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>70</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
6. REFERENCIAS


