ESPERANZA CONDICIONADA PARA
PROBABILIDADES FINITAMENTE ADITIVAS

Luis A. Sarabia
Universidad de Valladolid
Colegio Universitario de Burgos

ABSTRACT

Let \((\Omega, \theta, J)\) be a finitely additive probabilistic space formed by any set \(\Omega\), an algebra of subsets \(\theta\) and a finitely additive probability \(J\). In these conditions if \(F\) belongs to \(V^1(\Omega, \theta, J)\) there exists \(f\), element of the completion of \(L^1(\Omega, \theta, J)\), such that \(F(E) = \int_E f \, dJ\) for all \(E\) of \(\theta\) and conversely.

This integral representation gives sense to the following result, which is the objective of this paper, in terms of the point function: If \(\beta\) is a subalgebra of \(\theta\), for every \(F\) of \(V^1(\Omega, \theta, J)\) there exists a unique element of \(V^1(\Omega, \beta, J)\) which we note down by \(E(F/\beta)\), conditional expectation of \(F\) given \(\beta\).

\(E(F/\beta)\) is characterized by \((E(F/\beta), G) = (F, G)\) for every \(G\) of \(V^\infty(\Omega, \beta, J)\). Aside from this, the mapping \(E(\cdot/\beta): V^1(\Omega, \theta, J) \rightarrow V^1(\Omega, \beta, J)\) is lineal, positive, contractive, idempotent and \(E(J/\beta) = J\). If \(F\) is of \(\nu^p(\Omega, \theta, J)\), \(p > 1\), \(E(F/\beta)\) is of \(\nu^p(\Omega, \beta, J)\).

Key words and phrases: Finitely additive probability, algebra, conditional expectation, Dunford-Schwartz integral, \(\nu^p\)-space.

INTRODUCCION

Sea \((\Omega, \theta, J)\) un espacio probabilístico finitamente aditivo. Pasamos a enunciar algunas de las definiciones y resultados sobre medibilidad e integrabilidad de funciones definidas en \((\Omega, \theta, J)\). Todos ellos pueden verse en [8].
Consideremos el espacio vectorial de las aplicaciones reales definidas en Ω y sobre él la seminorma $\|f\| = \inf_{\alpha} (\alpha + J^* \{ |f| > \alpha \})$, siendo J^* la medida exterior acotada asociada a J.

El conjunto de las funciones tales que $\|f\| = 0$, es decir las J-nulas forman un subespacio vectorial de modo que en el espacio cociente $F(\Omega, \theta, J)$, a cuyos elementos nos referiremos como si de funciones se trataran siempre que no haya riesgo de confusión, la seminorma anterior induce una distancia conocida como la de la "convergencia en probabilidad". Hay que indicar que las funciones J-nulas no son en general casi seguro nulas, un ejemplo está dado en [8] pág. 103. Si J es numéricamente aditiva ambos conceptos coinciden así como el de la convergencia en probabilidad que actualmente es: f_n converge en probabilidad a f si y solamente si para cada $\epsilon > 0$ existe una sucesión de conjuntos $A_n(\epsilon)$ en θ tales que $J(A_n) \rightarrow 0$ y $\{ |f_n - f| > \epsilon \} \subset A_n$, $n = 1, 2, ...$

El espacio de las funciones totalmente medibles es por definición el cierre de las funciones simples en $F(\Omega, \theta, J)$; se anotará por $TM(\Omega, \theta, J)$. A partir de él $M(\Omega, \theta, J)$ es el espacio de las funciones J-medibles formado por aquellas tales que para todo E de θ, con $J(E) < \infty$, $f 1_E$ es totalmente medible. Esta distinción carece de sentido en nuestro caso por ser J acotada.

Diremos que una función, de Ω en R, J-medible es J-integrable si existe una sucesión f_n de simples J-integrables que tienden a f en probabilidad y además $\lim_{n} m \int_{\Omega} |f_m - f_n| \, dJ = 0$. Se demuestra que $\int_{\Omega} f \, dJ = \lim_{n} \int_{\Omega} f_n \, dJ$ no depende de la sucesión elegida, y también que si f es J-medible es J-integrable si y solamente si $|f|$ es J-integrable.

Si f es J-integrable la integral indefinida asociada a f es $\int_{E} f \, dJ = \lim_{n} \int_{E} f_n \, dJ$, para todo E de θ.

Definimos $\|f\|_p = (\int_{\Omega} |f|^p \, dJ)^{1/p}$ y entonces $\|f\|_p = 0$ si y solamente si f es J-nula ($1 \leq p < \infty$), haciendo el cociente por este subespacio, los $L^p(\Omega, \theta, J)$ son normados y en ellos las simples forman un conjunto denso.

El espacio $M(\Omega, \theta, J)$ y los $L^p(\Omega, \theta, J)$, $1 \leq p < \infty$, no son con-
pletos (ejemplo 1). Para garantizar que lo son los L^p basta con que lo sea M por su topología de la convergencia en probabilidad. Como la demostración es la misma que en el caso numerablemente aditivo ([8] pág. 145-146) omitimos hacerla aquí.

En adelante al referirnos a las funciones J-medibles, entendemos el completado de $M(\Omega, \theta, J)$.

Manejar espacios completos es interesante desde el punto de vista de riqueza de propiedades, en un contexto aditivo del cálculo de probabilidades, existe otra razón: La convergencia casi segura no implica la convergencia en probabilidad (ejemplo 2) y por tanto las construcciones por “límites puntuales” son poco manejables.

Cabe esperar que los espacios L^p, aquí considerados, tengan las mismas propiedades que los L^p construidos sobre σ-álgebras y con probabilidades numerablemente aditivas. Esto es así y es el objeto de la tercera sección de este trabajo, en la que demostramos que los $L^p(\Omega, \theta, J)$ son isométricos a los $V^p(\Omega, \theta, J)$ de S. Leader [13], proposición 3.2, y estos gozan de las propiedades habituales. Además la construcción lleva de forma natural a la identificación de las funciones de conjunto absolutamente continuas respecto de J con las integrales $\int_E f d\mathcal{H}$, donde f es de $L^1(\Omega, \theta, J)$; proposición 3.3. Con la hipótesis suplementaria de que las funciones integrables son además medibles Borel se obtiene en 3.4 la versión aditiva de la descomposición de Lebesgue.

La representación integral de una medida acotada finitamente aditiva, se ha establecido múltiples veces con diversas hipótesis indicamos [4], [5], [6], [7], [8] pág. 315, [9], pág. 129 - 140 de [11] sin pretender que la lista sea exhaustiva.

Fefferman [10] ha demostrado también gran parte de las propiedades de los L^p estableciendo una isometría entre éste y uno σ-aditivo. Juzgamos interesante incluir nuestras demostraciones porque no dependen de ninguna referencia a resultados del caso numerablemente aditivo.

En particular el que $L^2(\Omega, \theta, J)$ sea de Hilbert nos ha posibilitado la construcción de la esperanza condicionada como un operador lineal positivo, contractante, de norma uno, idempotente y que deja inva-
riante a la identidad, 4.6 y 4.7. Además admite ser extendido a cual-
quier L^p.

A efectos de su posterior utilización, la sección primera se dedica a
resumir las definiciones y algunos de los resultados de [13] y la segunda
al estudio de los casos L^w, V^w y la validez, para sucesiones generaliza-
das, de los criterios de convergencia en norma.

Ejemplo 1. Sea $\Omega = [0, 1]$, θ el álgebra generada por los intervalos
del $[0, 1]$ y J la probabilidad aditiva definida por: $J(0, b) = \lim h(x)$,
$x \to b$ y $x < b$; $J(0, b] = h(b)$, donde $h(x) = \frac{1}{2} x$ si $x \in [0, \frac{1}{2})$; $3/8$ si
$x = \frac{1}{2}$; $\frac{1}{2} x + \frac{1}{2}$ si x es de $(\frac{1}{2}, 1]$. Sean $f_n(x) = I_{[a_n, b_n]}(x)$ con $a_n \uparrow \frac{1}{2}$
y $b_n \downarrow \frac{1}{2}$. Es inmediato que $J(\{|f_n - f_m| > \alpha\} \to 0$, cuando $m, n \to \infty$;
es decir f_n es de Cauchy en probabilidad pero no existe ninguna fun-
ción f, definida en $[0, 1]$ que sea su límite en probabilidad.

Ejemplo 2. Sea $\Omega = \mathbb{N}$, θ el álgebra de los subconjuntos finitos y sus
complementarios, $J(E)$ es cero o uno según E sea finito o no. La su-
cesión $a_n f_n = a_n I_{[n, n+1, ...]}$, donde a_n es una sucesión de reales que tie-
den a "a" cumple: $J(\{m f_n(m) \to 0\} = 1$ luego converge caso seguro a la
función idénticamente nula, mientras que su límite en probabilidad es
a I_N. En efecto, para cualquier $\alpha > 0$ existe un índice K de modo que
$J(\{m/|f_n - a I_N| > \alpha\} = 0 para todo n \geq K$.

1. **LOS ESPACIOS** $V^p(\Omega, \theta, J)$

En [8] pág. 114 se demuestra que si f es J-integrable $\int f I_E dJ$ es
una función de conjunto F, finitamente aditiva, definida para todo E
de θ y absolutamente continua respecto de J. Después de leer el trabajo
de S. Leader [13] en el que estructura los espacios de las funciones de
conjunto de este tipo (introducidas con anterioridad por Bochner
[2]), coincidimos con su apreciación de que es más natural considerar
funciones de conjunto, para el estudio de los L^p y que: "... al requerir
únicamente la aditividad finita en lugar de la numerable y consecuentemente
evitando las integrales. reducimos al mínimo los procesos de
paso al límite" [13].

67
1.1. Definición

\(F \) es de \(V^1(\Omega, \theta, J) \) si y solamente si es una función definida en \(\theta \) cumpliendo:

i) Es acotada

ii) \(F(A \cup B) = F(A) + F(B) \) si \(A \) y \(B \) son disjuntos de \(\theta \).

iii) \(F \ll J \) en el sentido \(\delta, \varepsilon \) o lo que es igual: Para cada \(\varepsilon > 0 \) existe \(\delta > 0 \) tal que \(J(E) < \delta \) implica \(|F(E)| < \varepsilon \).

A cada elemento de \(V^1 \) se asocia el número real

iv) \(\|F\|_1 = \sup_{E \in \theta} (F(E) - F(E^c)) = \lim_{\Delta \uparrow} \sum_{E_\gamma} |F(E_\gamma)| \), donde \(\Delta = \{E_\gamma\} \) es una partición finita de \(\Omega \) cuyos elementos \(E_\gamma \) son de \(\theta \) (en lo que sigue anotaremos siempre por \(\Delta \in \theta \) si no hay riesgo de confusión en cuanto al álgebra). El límite está tomado en el sentido de Moore-Smith, con el orden usual por refinamiento, en las particiones.

Es conocido que de iv) de la definición anterior se sigue que \(J(E) = 0 \) implica que \(F(E) = 0 \). El recíproco no es cierto en general salvo que \(F \) sea numerablemente aditiva, incluso aun cuando \(J \) lo fuera, como lo muestra el siguiente ejemplo: Sean \(\Omega, \theta \) y \(F \) como en el ejemplo 2 de la introducción, \(J \) cualquier probabilidad numerablemente aditiva, entonces \(J(E) = 0 \) implica que \(F(E) = 0 \), pero \(F \) no es absolutamente continua respecto de \(J \).

1.2. Definición

Para \(1 \leq p < \infty \), \(V^p(\Omega, \theta, J) \) es el conjunto de los elementos \(F \) de \(V^1 \) tales que \(\forall \Delta \in \theta \) existe \(M \) real independiente de \(\Delta \) y:

i) \(\sum_{E_\gamma} \left| \frac{F(E_\gamma)}{J(E_\gamma)} \right|^p J(E_\gamma) \ll M \), además \(\|F\|_p = \lim_{\Delta \uparrow} \left(\sum_{E_\gamma} \left| \frac{F(E_\gamma)}{J(E_\gamma)} \right|^p \right)^{1/p} \).

\(J(E_\gamma) \)^{1/p}. Para \(p = \infty \), \(V^\infty(\Omega, \theta, J) \) son los elementos de \(V^1 \) cumpliendo:

ii) \(\sup_{E \in \theta} \left| \frac{F(E)}{J(E)} \right| < \infty \) con \(\|F\|_\infty = \sup_{E \in \theta} \left| \frac{F(E)}{J(E)} \right| \).

68
1.3. Proposición

i) Si $1 \leq p < \infty$, V^p es un espacio de Banach con las respectivas normas, además $\|F\|_\infty = \lim \|F\|_p$ ($p \to \infty$), para todo $F \in V^\infty$.

ii) Los espacios V^p forman un sistema monótono, es decir si $\infty \geq p \geq q \geq 1$ entonces $V^p \subset V^q$ y si F_n converge en norma-p, también converge en norma-q.

iii) Si F es de $V^p(1 \leq p < \infty)$, para cada $E \in \Theta$ la expresión $|F|^p(E) = \|F \circ E\|^p_p$ en la que $(F \circ E)(A) = F(E \cap A) \forall A \in \Theta$, define un elemento de V^1 que anotaremos por $|F|^p$.

iv) Se cumple la siguiente "convergencia dominada": Si $F = \lim_n F_n$ en V^1 y $|F_n| \leq G \forall n$, con $G \in V^p$ ($1 < p < \infty$) entonces $F = \lim_n F_n$ en V^p y la convergencia es cierta en cualquier V^r con $1 < r < p$.

1.4. Definición

Como es usual, si $F \in V^1$ diremos que $F \geq 0$ si $F(E) \geq 0$ para todo $E \in \Theta$. También si F, G son de V^1, están en él:

$F \wedge G(E) = (\inf (F, G))(E) = \inf_{A \in \Theta} \{F(A \cap E) + G(A^c \cap E)\}, \forall E \in \Theta$

$F \vee G(E) = (\sup (F, G))(E) = \sup_{A \in \Theta} \{F(A \cap E) + G(A^c \cap E)\}, \forall E \in \Theta$

y de ello $F = F^+ - F^-$ de forma única, donde ambas son positivas: $F^+ = F \vee 0$, $F^- = -F \wedge 0$ y $F^+ \wedge F^- = 0$. Como es obvio $|F| = F^+ + F^-$.

1.5. Proposición

i) V^p es retículo de Banach (σ-completo con la terminología de [8]).

ii) Si $F \geq 0$ y es de $V^p (1 \leq p < \infty)$, $F = \lim_n (F \wedge n J)$ en V^p.

69
1.6. Definición

Diremos que F es simple si es de la forma: $F = \sum_\Delta a_\gamma J \circ E_\gamma$, con $a_\gamma \in R$ y $\Delta \in \theta$. En particular si F es de $V^1(\forall \Delta \in \theta)$, $F_\Delta = \sum_\Delta \frac{F(E_\gamma)}{J(E_\gamma)} J \circ E_\gamma$.

1.7. Proposición

Las funciones simples son densas en V^p. Más todavía: Si F es de V^p, $F = \lim_\Delta F_\Delta$ en norma-p y $\|F\|_p = \lim_\Delta \uparrow \|F_\Delta\|_p$.

1.8. Proposición

i) Si $1 \leq p < \infty$, el espacio conjugado de V^p es V^q con $1/p + 1/q = 1$.

ii) Si F es cualquiera de V^p y H un elemento fijo de V^q, dual de V^p, $(F, H) = \lim_\Delta \sum_\Delta \frac{F(E_\gamma) H(E_\gamma)}{J(E_\gamma)}$, define un funcional lineal acotado en V^p que cumple: $|(F, H)| \leq \|F\|_p \|H\|_q$.

iii) Todo funcional lineal acotado h definido en V^p tiene una representación única en la forma de ii), siendo en este caso $H(E) = h(J \circ E)$ y $\|H\|_q = \|h\|$.

1.9. Proposición

Sean F de V^p y H de V^q, con p y q conjugados ($1 \leq p < \infty$). Entonces $F \cdot H(E) = (F \circ E, H \circ E)$ para todo E de θ, es un elemento de V^1 tal que: $\|F \cdot H\|_1 \leq \|F\|_p \|H\|_q$ y $F \cdot H = \lim_\Delta F_\Delta H_\Delta$ en norma-1.

Las convergencias en sentido fuerte y débil para los espacios V^p vienen caracterizadas por la siguiente

1.10. Proposición

i) a) Sea F_n una sucesión en $V^p (1 < p < \infty)$, F_n converge débil-
mente si y solamente si $F_n(E)$ converge para cada E de θ y $\|F_n\|_p$ está acotada uniformemente en "n" por una constante real.

i) b) F_n converge fuertemente a F si y solamente si $F_n(E)$ converge a $F(E)$ para cada E de θ y $\lim_n \|F_n\|_p = \|F\|_p$.

ii) a) Si la sucesión está en V^1 converge débilmente si y solamente si para cada E de θ, $F_n(E)$ converge y las F_n son uniformemente absolutamente continuas.

ii) b) La sucesión converge fuertemente si y solamente si $F_n(E)$ converge uniformemente para todo E de θ.

2. ESPACIOS $V^m(\Omega, \theta, J)$ Y $L^m(\Omega, \theta, J)$

2.1. Lema

Si F es de V^m, $\forall \Delta \in \theta$, $F_\Delta \in V^m$ y $\|F_\Delta\|_\infty = \max_\Delta \frac{|F(E\gamma)|}{J(E\gamma)}$

Demostración: Evidente a partir de 1.2 ii) y 1.6.

2.2. Lema

Sean F de V^m y A de θ entonces $F \circ A \in V^m$ y $\|F\|_\infty = \sup_A \|F \circ A\|_\infty$

Demostración: De que $|F \circ A(E)| \|J(E)^{-1} \leq |F(A \cap E)| \|J(A \cap E)^{-1} \leq \|F\|_\infty$ se sigue que $F \circ A$ pertenece a V^m. La segunda parte es consecuencia de $\frac{|F(A)|}{J(A)} \leq \|F \circ A\|_\infty \leq \|F\|_\infty$.

2.3. Proposición

Las funciones simples son densas en V^m.

Demostración: Sea $F \in V^m$, Δ cualquiera, $(F_\Delta - F) \circ A \in V^m$ según los lemas anteriores luego dado $r > 0$, existe E de θ tal que $\|(F_\Delta - F) \circ A\|_\infty - r \leq \frac{|(F_\Delta - F)(A \cap E)|}{J(E)} \leq \|F_\Delta - F\|_p \|J(E)^{-1/p}\|_p$, tomando sucesivas en A, tenemos:
(1) \(\| F_\Delta - F \|_\infty - r \leq \| F_\Delta - F \|_p J(E)^{-1/p} \), de donde, por 1.7
\(\limsup_\Delta \| F_\Delta - F \|_\infty - r \leq \limsup_\Delta \| F_\Delta - F \|_p J(E)^{-1/p} = 0 \). Con ello \(F = \lim_\Delta F_\Delta \).

2.4. Corolario

Sea \(F \geq 0 \) de \(V^\infty \), se cumple que para cualquier \(n \in N \), \(F \wedge n J \) es de \(V^\infty \) y \(F = \lim_n F \wedge n J (n \to \infty) \) en \(V^\infty \).

Demostración: Trivial después de 2.3.

2.5. Proposición

Una sucesión en \(V^\infty \) converge fuertemente a \(F \) de \(V^\infty \) si y solamente si \(F_n(E) \) converge uniformemente a \(F(E) \), para todo \(E \) de \(\theta \), y \(\| F_n \|_\infty \leq M, \forall n \).

Demostración: Según 1.10 ii b) si \(F_n(E) \) converge uniformemente en \(E \) tenemos que \(\lim_n F_n = F \) en \(V^1 \). La acotación garanta que \(\forall E \in \theta \), \(|F_n(E)| \leq \| F_n \|_\infty J(E) \leq M J(E) \) lo que por i.2 iv) es suficiente para que \(\lim_n F_n = F \) en \(V^p \) (1 \(< p < \infty \)).

Si en (1) de la proposición 2.3 sustituimos \(F_\Delta \) por \(F_n \) y tomamos límites en “n”: \(F = \lim_n F_n \) en \(V^\infty \).

Recíprocamente, la convergencia uniforme en \(E \in \theta \) de las \(F_n \) se sigue de |\(F_n(E) - F(E) | \leq \| F_n - F \|_\infty \). Dado que \(\| F_n - F \|_p \leq \| F_n - F \|_\infty \), \(F \) es límite en \(V^p \) de \(F_n \), lo que implica que \(F_n \) converge débilmente en \(V^p \) y 1.10 i a) garantiza que \(\| F_n \|_p \leq M, \forall n \in N \), luego \(\| F_n \|_\infty \leq M, \forall n \in N \).

En las siguientes proposiciones establecemos algunos resultados sobre \(L^\infty(\Omega, \theta, J) \) y para ello utilizamos la definición de función esencialmente acotada [8].

2.6. Definición

Diremos que una función real \(f \), definida en \(\Omega \) y \(J \)-medible es de
$L^\infty(\Omega, \theta, J)$ si existe un conjunto J-nulo N tal que la restricción de f a $\Omega-N$ es acotada. Además $\|f\|_\infty = \inf_N \left\{ \sup_{\omega \in \Omega-N} |f(\omega)| \right\}$, donde N varía en los conjuntos J-nulos de θ.

2.7. Lema

Si f es de L^∞, entonces $\|f\|_\infty = \lim_{p \to \infty} \|f\|_p$.

Demostración: Trivialmente $\|f\|_p \leq \|f\|_\infty$ luego $f \in L^p$, para todo $p \geq 1$ y de ello $\lim \sup_p \|f\|_p \leq \|f\|_\infty$. Por otro lado, dado $r > 0$ se ha de cumplir $\|f\|_\infty - r \leq |f(\omega)|$ para los ω de un conjunto E que tiene probabilidad distinta de cero por tanto $\|f\|_p \geq (\int_E |f|^p \, dJ)^{1/p} \geq (\|f\|_\infty - r) J(E)^{1/p}$, luego $\lim \inf_p \|f\|_p \geq \|f\|_\infty - r$ que con la desigualdad anterior prueba el resultado.

2.8. Proposición

L^∞ con la $\|f\|_\infty$ es un espacio vectorial normado.

Demostración: Que el espacio vectorial es trivial. En cuanto que $\|f\|_\infty$ es una norma: La desigualdad triangular se sigue de la definición 2.6 y que $\|f\|_\infty = 0$ si y solamente si f es J-nula es consecuencia del lema 2.7 y de que el resultado es cierto en L^p ($1 \leq p < \infty$).

NOTA. Como hemos comentado en la introducción si $M(\Omega, \theta, J)$ es completo los L^p también lo son, ocurre lo mismo para el caso L^∞. En efecto, después del Lema si f_n es una sucesión de Cauchy en L^∞ también lo es en cada uno de los L^p ($p \geq 1$) luego existe un elemento en cada uno de ellos f^p cumpliendo que f_n tiende en probabilidad a f^p y $\lim_n \|f_n^p - f^p\|_p = 0$. Es inmediato comprobar que para cualesquiera p y q la función diferencia $f^p - f^q$ es J-nula, de otro modo, la clase límite de las f_n es la misma en todos los L^p, sea f. De nuevo 2.7 garantiza que $\lim_n f_n = f$ en L^∞.

73
2.9. Proposición

Las funciones reales definidas en Ω J-medibles, J-simples, son densas en L^∞.

Demostración: Si f es de L^∞, existe un $N \in \theta$, J-nulo tal que $f I_\Omega \cdot N$ es acotada luego p-integrable y de ello se sigue que existen g_n J-simples cuyo límite en probabilidad es $f I_\Omega \cdot N$: podemos tomarlas cumpliendo $|g_n| \leq 2 |f I_\Omega \cdot N|$ (véase 2-22, pág. 117 de [8]). Por el teorema 7 (pág. 124 de [8]), g_n converge en L^p a $f I_\Omega \cdot N$, para todo p. El razonamiento utilizado en la nota precedente proporciona $f I_\Omega \cdot N = \lim_n g_n$ en L^∞, además $\|g_n - f\|_\infty \leq \|f I_N\|_\infty + \|g_n - f I_\Omega \cdot N\|_\infty$, y $f I_N$ es J-nula, luego $\lim_n g_n = f$ en L^∞.

Los criterios de convergencia en norma p, establecidos en las proposiciones 2.5; 1.10 ib) ii) para los espacios V^p son generalizables a familias $(F_\alpha)_{\alpha \in \Lambda}$ donde Λ es un conjunto de índices filtrante superior (inferiormente). Las demostraciones se basan en el hecho de que la topología es métrica y si no se diera la convergencia en V^p de los F_α, podríamos extraer una sucesión F_n no convergente, lo que es contradictorio. Los recíprocos se demuestran de forma similar al caso de sucesiones.

2.10. Proposición

i) Sea $(F_\alpha)_{\alpha \in \Lambda}$ una familia de elementos de V^1 con Λ filtrante superior (inferiormente). F_α converge en V^1 si y solamente si $F_\alpha(E)$ converge uniformemente en $E \in \theta$.

ii) Si los F_α son de $V^p (1 < p < \infty)$, entonces F_α converge si y solamente si $F_\alpha(E)$ converge a $F(E)$ para todo $E \in \theta$ y $\|F_\alpha\|_p$ tiende a $\|F\|_p$.

iii) En V^∞; F_α tiende a F si y solamente si $F_\alpha(E)$ converge a $F(E)$ uniformemente en $E \in \theta$ y $\|F_\alpha\|_\infty \leq M$ para todo α de Λ.

74
3. RELACION ENTRE LOS $L^p(\Omega, \theta, J)$ Y LOS $V^p(\Omega, \theta, J)$, $1 \leq p \leq \infty$

3.1. Proposición

Existe una biyección entre el conjunto de las funciones simples en V^p y las simples de L^p. Además la biyección es lineal, mantiene el orden y las normas.

Demostración: A cada f, simple de L^p, que es de la forma $f = \sum_{\Delta} a_\gamma I_{E_\gamma}$ con $\Delta \in \theta$, le asociamos la función de conjunto $h(f) = F = \sum_{\Delta} a_\gamma J_{E_\gamma}$.

Trivialmente h es suprayectiva, inyectiva, lineal y positiva.

La comprobación de que h mantiene las normas la haremos separadamente para a) $p = 1$; b) $1 < p < \infty$; c) $p = \infty$.

a) Sea f como antes, si $\Delta' = \{E_\delta\}$ es más fina que Δ tenemos: $\Sigma_{\Delta'} |F(E_\delta)| \leq \Sigma_{\Delta} (\Sigma_{\Delta'} |a_\gamma| J(E_\gamma \cap E_\delta)) = \Sigma_{\Delta} |a_\gamma| J(E_\gamma) = \|f\|_1$. De 1.1 iv) se deduce al tomar superiores en Δ' que $\|F\|_1 \leq \|f\|_1$, y también en particular que $\|F\|_1 \geq \|f\|_1$.

b) Por la definición 1.2 i) $\|F\|_p \geq \|f\|_p$.

Sea $\Delta' = \{E_\delta\}$ una partición mas fina que Δ, $\Sigma_{\Delta'} |F(E_\delta)| J(E_\delta)^p J(E_\delta)^{1-p} = \Sigma_{\Delta} |a_\gamma| J(E_\gamma \cap E_\delta)^p J(E_\delta)^{1-p} = \Sigma_{\Delta} (\Sigma_{\Delta'} |a_\gamma| J(E_\gamma \cap E_\delta))^{1-p} \cdot J(E_\gamma \cap E_\delta)^1 \leq \Sigma_{\Delta} (\Sigma_{\Delta'} |a_\gamma|^p J(E_\gamma \cap E_\delta))$. Desglosando, aplicando la desigualdad de Hölder para $p > 1$ y $q > 1$. Es fácil comprobar que el último término de la desigualdad vale $\|f\|_p^p$. Luego $\|F\|_p = \|f\|_p$.

c) Dado que $h(f) = \Sigma_{\Delta} a_\gamma J_{E_\gamma}$ es de V^∞, y que si E es de θ se cumple: $|F(E)|/J(E) \leq \max_{a_\gamma} |a_\gamma| = \|f\|_\infty$ tomando superiores en E, por ii) de 1.2 $\|F\|_\infty \leq \|f\|_\infty$. Finalmente, el lema 2.2 permite afirmar que para cada E_γ, $\|F\|_\infty \geq \|F_{E_\gamma}\|_\infty = |a_{E_\gamma}| \cdot \|J_{E_\gamma}\|_\infty = |a_{E_\gamma}|$, luego $\|F\|_\infty \geq \max_{\Delta} |a_\gamma| = \|f\|_\infty$.

3.2. Proposición

$V^p(\Omega, \theta, J)$ es isométrico a $L^p(\Omega, \theta, J)$ para todo $p \geq 1$. La isometría mantiene el orden.
Demostración: Ambos son espacios completos: Los \(V^p \) por 1.3 i), los \(L^p \) por nuestra hipótesis sobre \(M(\Omega, \theta, J) \). Por otro lado las funciones simples son densas en \(L^p \) ([8] pág. 125 para \(1 \leq p < \infty, 2.9 \) para \(L^\infty \)) y también las respectivas simples lo son en \(V^p \) (proposiciones 1.7 y 2.3). Esto junto con el resultado anterior demuestra la proposición.

Es evidente que después de 3.2 todas las propiedades de los \(V^p \) relativas al orden, la topología y las relaciones entre ellos al variar “\(p \)” se trasladan a los \(L^p \), en particular los resultados 1.3, 1.5, 1.8 y 1.10. Otros de no menos interés pueden encontrarse en [13].

3.3. Proposición

Sea \((\Omega, \theta, J)\) y \(F \) una medida positiva, acotada definida en \(\theta \) y finitamente aditiva. Entonces son equivalentes:

i) \(F \) es absolutamente continua respecto de \(J \) (en el sentido \(\delta, \varepsilon \)).

ii) Existe una función positiva \(f \) de \(L^1(\Omega, \theta, J) \) tal que \(F(E) = \int_E f \, dJ, \forall E \in \theta \).

Demostración: Que i) implica ii) es evidente después de la caracterización de la convergencia en \(V^1 \) dada por 1.10 iv) y la isometría de 3.3. El recíproco es el apartado (b) del teorema 20 de [8], pág. 114.

Si consideramos únicamente las funciones de \(L^1 \) medibles Borel, es decir aquella tales que \(f^{-1}(B) \) pertenece a \(\theta \), para todo \(B \) de Borel en \(R \), las medidas que les están asociadas mediante 3.2 cumplen una descomposición como la de Lebesgue. Con más precisión:

3.4. Proposición

Dado \((\Omega, \theta, J)\) y \(F \) positiva, acotada, finitamente aditiva, definida en \(\theta \) y cumpliendo \(F(E) = \int_E h \, d(F + J) \) con \(h \) medible Borel, entonces para todo \(E \) de \(\theta \), \(F(E) = \int_E f \, dJ + F(E \cap N) \); donde \(N \) es \(F + J \)-nulo y \(f \) está determinada salvo una función \(J \)-nula.
Demostración: Con la estructura disponible después de 3.2 y 3.3 se puede repetir la demostración que para el caso numerablemente aditivo se hace en [14], pág. 47.

4. ESPERANZAS CONDICIONADAS

Después de los resultados establecidos en la sección tercera, la construcción de la esperanza condicionada la haremos en V^p. Todos los resultados son trasladables en forma obvia a L^p.

Las proposiciones 1.7 y 2.3 proporcionan sentido a la

4.1. Definición

Sea $V^p(\Omega, \theta, J)$, $1 \leq p \leq \infty$ y β una subálgebra de θ. $V^p(\Omega, \theta, J)$ será en adelante el conjunto de los elementos de $V^1(\Omega, \theta, J)$ alcanzables en norma p mediante funciones simples asociadas a particiones finitas de Ω formadas por conjuntos de β.

De forma evidente se obtiene que $V^p(\beta)$ es subespacio vectorial cerrado de $V^p(\theta)$, y que J y $J \circ E$ para cualquier E de β pertenecen a $V^p(\beta)$.

4.2. Lema

$V^p(\theta)$ con $2 \leq p < \infty$ es uniformemente convexo.

Demostración: Para $p \geq 2$, a y b reales se cumple la desigualdad de Clarkson ([12] pág. 224) $|a + b/2|^p + |a - b/2|^p \leq |a|^p/2 + |b|^p/2$. Aplicándola a $F(E_\theta)$ y $G(E_\theta)$ con $\{E_\theta\} = \Delta \in \theta$ cualquiera (F y G son de $V^p(\theta)$); después de multiplicar por $J(E_\theta)^{1-p}$ y sumar en Δ nos queda:

$$\|F_\Delta + G_\Delta/2\|_p^p + \|F_\Delta - G_\Delta/2\|_p^p \leq \|F_\Delta\|_p^p / 2 + \|G_\Delta\|_p^p / 2$$

en la que al tomar límites en Δ, por 1.7:
(1) \(\|F + G/2\|_p^p + \|F - G/2\|_p^p \leq \|F\|_p^p / 2 + \|G\|_p^p / 2 \)

Sean las sucesiones \(F_n \) y \(G_n \) en \(V^p(\theta) \) de norma menor o igual que uno, tales que \(\lim_n \|F_n + G_n\|_p = 2 \). Aplicando (1) a \(F_n - G_n \) y a \(F_n + + G_n \) tenemos: \(\|F_n - G_n\|_p^p \leq 2^p - \|F_n + G_n\|_p^p \) y al tender \(n \) a infinito \(\lim_n \|F_n - G_n\|_p = 0 \), luego \(V^p \) es uniformemente convexo ([8], pág. 74).

Este lema junto con que \(V^2(\beta) \) es subespacio vectorial, por tanto convexo y cerrado en \(V^2(\theta) \) demuestra:

4.3. **Lema**

Dado \(F \) en \(V^2(\theta) \) existe un único elemento \(G \) de \(V^2(\beta) \) tal que \(\|F - G\|_2 = \inf_{H \in V^2(\beta)} \|F - H\|_2 \).

Una demostración general de la existencia y unicidad del inferior con estas hipótesis puede verse, por ejemplo, en [15] pág. 144.

4.4. **Definición**

Dado \(F \) en \(V^2(\theta) \) llamaremos \(E(F/\beta) \) (esperanza condicionada de \(F \) a \(\beta \)) al único elemento \(G \) de \(V^2(\beta) \) determinado en el lema anterior.

A partir de la caracterización de los funcionales lineales dada por la proposición 1.8 es fácil comprobar que para \(F \) y \(H \) de \(V^2(\theta) \) la expresión:

\[
\lim_\Delta \sum_\Delta \frac{F(E_\gamma) H(E_\gamma)}{J(E_\gamma)} = \langle F, H \rangle
\]

define un producto escalar tal que \(\|F\|_2^2 = \langle F, F \rangle \) para todo \(F \) de \(V^2(\theta) \), luego \(V^2(\theta) \) es un espacio de Hilbert y diremos que \(F \perp G \) si y sólo si \(\langle F, G \rangle = 0 \). Como \(V^2(\beta) \) es subespacio vectorial cerrado y \(V^2(\theta) = V^2(\beta) \oplus [V^2(\beta)]^1 \), es inmediata la caracterización que de la \(E(\cdot/\beta) \) proporciona:

78
4.5. Proposición

Con la notación de 4.4, G es el único elemento de $V^2(\beta)$ que cumple:

$E(F/\beta) - F$ es de $[V^2(\beta)]^I$, de otro modo $<F, H> = <E(F/\beta), H>$, $\forall H \in V^2(\beta)$.

Explicitamente algunas de las propiedades de la aplicación $E(\cdot/\beta)$ de $V^2(\theta)$ en $V^2(\beta)$ que se deducen de 4.5 son:

4.6. Corolario

Es lineal, idempotente: $E(E(F/\beta)/\beta) = E(F/\beta)$ para todo F de $V^2(\theta)$, deja invariante a $V^2(\beta)$ y su núcleo es $[V^2(\beta)]^I$.

4.7. Proposición

$E(\cdot/\beta)$ es positivo en $V^2(\theta)$.

Demostración: Si suponemos que existen $F \geq 0$ en $V^2(\theta)$ y $E_0 \in \beta$ tales que $E(F/\beta)(E_0) < 0$, como $F - E(F/\beta)$ es ortogonal a cualquier elemento de $V^2(\beta)$ en particular para $J \circ E_0$ tenemos: $<F, J \circ E_0> = = <E(F/\beta), J \circ E_0>$. El primer miembro de la igualdad es positivo, por definición del producto escalar, al serlo F y $J \circ E_0$; mientras que el segundo es estrictamente negativo: En efecto dada $\Delta = \{E_0\}$ cualquiera consideremos $\Delta' = \{E'_{\gamma}\}$ la partición producto de Δ y $\{E_0, E'_{\gamma}\}$, entonces $\sum_{\Delta'} \frac{[E(F/\beta)](E'_{\gamma}) J(E_0 \cap E'_{\gamma})}{J(E'_{\gamma})} = \sum_{E_0 \cap E_0} E(F/\beta) (E_0 \cap E_0) = E(F/\beta)(E_0) < 0$, es decir, para cualquier partición existe otra más fina respecto de la que la suma anterior es estrictamente negativa, al tomar límites en Δ está demostrado. Forzosamente $E(F/\beta)(E) \geq 0$ para todo E de β, si F es positiva, lo que implica que $[E(F/\beta)]_{\Delta} \geq 0$ para todo $\Delta \in \beta$.

79
Ahora bien, $E(F/\beta)$ pertenece a $V^2(\beta)$ y por la definición 4.1 las simples asociadas a particiones formadas con elementos de β son densas, esto y el criterio de 2.10 ii) nos proporcionan que $E(F/\beta) \geq 0$.

Uno de los aspectos más importantes de la esperanza condicionada en el caso numerablemente aditivo, es el comportamiento de los elementos de $L^\infty(\beta)$ como constantes a efectos de condicionamiento ([14] pág. 7). La propiedad se mantiene en el caso finitamente aditivo.

4.8. Lema

Si H es de $V^\infty(\beta)$ y G de $V^2(\beta)$, entonces $H \cdot G$ es de $V^2(\beta)$.

Demostración: La proposición 1.9 garantiza que $H \cdot G \in V^1(\theta)$, más todavía $|H \cdot G(E)| = |H \circ E, G \circ E| \leq \|G \circ E\|_1 \cdot \|H\|_\infty = |G| \cdot \|E\|_2 \cdot \|H\|_\infty$, con esto para $\Delta \in \theta$ tenemos:

$$\left(\sum_{\Delta} \left| \frac{H \cdot G(E_\gamma)}{J(E_\gamma)} \right|^2 \cdot J(E_\gamma) \right)^{1/2} \leq \|H\|_\infty \cdot \|G\|_2, \text{ luego } H \cdot G \in V^2(\theta).$$

Para ver que es de $V^2(\beta)$ basta tener en cuenta que $H \cdot G = \lim_{\Delta \rightarrow \beta} H \cdot G_\Delta$ en norma dos, lo que se hace de forma análoga a como se demuestra la segunda parte de 1.9; como H y G son alcanzables por simples definidas con particiones $\Delta \in \beta$ en el límite anterior basta con tomarlas de este tipo, luego $H \cdot G \in V^2(\beta)$.

4.9. Proposición

Si H es de $V^\infty(\beta)$ y F de $V^2(\theta)$ se tiene: $E(H \cdot F/\beta) = H \cdot E(F/\beta)$

Demostración: Después del lema y la proposición 4.5, para cualesquiera H de $V^\infty(\beta)$, G de $V^2(\beta)$ y F de $V^2(\theta)$:

1. $\langle E(F/\beta), H \cdot G \rangle = \langle F, H \cdot G \rangle$
2. $\langle E(H \cdot F/\beta), G \rangle = \langle H \cdot F, G \rangle$

Demostrar que los dos segundos miembros son iguales es trivial a partir de las definiciones, por tanto $\langle E(F/\beta), H \cdot G \rangle = \langle E(H \cdot F/\beta), G \rangle$

80
más todavía el primer miembro es igual a \(<H,E(F/\beta), G> \), luego
\(<E(H,F/\beta), G> = <H,E(F/\beta), G> \) y esto para todo \(G \) de \(V^2(\beta) \), la
 unicidad de la esperanza condicionada garantiza la igualdad que queríamos demostrar.

4.10. Proposición

Si \(F \) pertenece a \(V^1(\theta) \) y \(\beta \) es subálgebra de \(\theta \), entonces existe un
único elemento \(E(F/\beta) \) de \(V^1(\beta) \) tal que:

\[
(E(F/\beta), G) = (F, G) \quad \text{para todo } G \text{ de } V^\omega(\beta)
\]

Demostración: Sea \(\Delta \in \theta \) cualquiera, \(F_\Delta \) es de \(V^2(\theta) \) y tiene sentido
\(E(F_\Delta/\beta) \) como elemento de \(V^2(\beta) \), además si \(\Delta \) y \(\Delta' \) son dos particiones:

\[
|E(F_\Delta/\beta)(E) - E(F_{\Delta'}/\beta)(E)| \leq \|E(F_{\Delta'}/\beta) - E(F_\Delta/\beta)\|_1 = \\
(1) = \|E(F_\Delta - F_{\Delta'}/\beta)\|_1 = \sup_{\Delta'' \in \beta} \|E(F_\Delta - F_{\Delta'}/\beta)\|_{\Delta''} = \\
(2) = \sup_{\Delta'' \in \beta} \sum_{\Delta''} |E(F_\Delta - F_{\Delta'}/\beta)(E_{\Delta''})| = \\
(3) = \sup_{\Delta'' \in \beta} \sum_{\Delta''} |(F_\Delta - F_{\Delta'})(E_{\Delta''})| \leq \|F_\Delta - F_{\Delta'}\|_1
\]

Las propiedades utilizadas han sido: en (1) la linealidad de la espe-
ranza condicionada y la proposición 1.7, en (2) el apartado iv) de 1.1
y que \(E(.)/\beta \) es de \(V^2(\beta) \), en (3) que para todo \(E \) de \(\beta \) y \(F \in V^2(\theta) \) se
tiene la igualdad \(F(E) = E(F/\beta)(E) \), deducida de 4.7 y de que \(J \circ E \) per-
tenece a \(V^2(\beta) \), si \(E \in \beta \).

Tomando límites en \(\Delta \) y \(\Delta' \) la completitud de \(V^1(\theta) \) proporciona
\(\lim_{\Delta, \Delta'} |E(F_\Delta/\beta)(E) - E(F_{\Delta'}/\beta)(E)| = 0 \) uniformemente en \(E \in \theta \), en
consecuencia \(E(F_\Delta/\beta) \) converge en \(V^1(\theta) \) a un elemento que anotaremos
por \(E(F/\beta) \), es decir:

\[
(4) \quad E(F/\beta) = \lim_{\Delta} E(F_\Delta/\beta) \text{ en norma uno.}
\]

La unicidad del límite es trivial.
Demostremos que $E(F/\beta)$ pertenece a $V^1(\beta)$, para ello sean $\Delta \in \beta$ y $\Delta' \in \theta$. Entonces $\|E(F/\beta)\|_\Delta - E(F/\beta)\|_1 \leq \|E(F/\beta)\|_{\Delta'} - E(F_{\Delta'}/\beta)\|_1 + \|E(F_{\Delta'}/\beta)\|_1 - E(F_{\Delta'}/\beta)\|_1 + \|E(F_{\Delta'}/\beta) - E(F/\beta)\|_1$, tomado límites, primero en $\Delta \in \beta$ y después en $\Delta' \in \theta$ nos queda $\lim_{\Delta \in \beta} \|E(F/\beta)\|_\Delta - E(F/\beta)\|_1 = 0$, luego $E(F/\beta)$ es de $V^1(\beta)$ como queríamos.

De (4) se deduce que para todo E perteneciente a $\beta : E(F/\beta)(E) = \lim_{\Delta \in \theta} E(F_{\Delta}/\beta)(E) = \lim_{\Delta \in \theta} F_{\Delta}(E) = F(E)$; además, como F_{Δ} es de $V^2(\theta)$ para cualquier Δ, según 4.5 $(E(F_{\Delta}/\beta), G) = (F_{\Delta}, G)$ para cualquier G de $V^2(\beta)$ y en particular para cualquier G de $V^\infty(\beta)$, si tenemos en cuenta la linealidad de la esperanza condicionada: $|\langle F_{\Delta}, G \rangle - \langle E(F_{\Delta}/\beta), G \rangle| = |\langle E(F_{\Delta}/\beta), G \rangle - \langle E(\beta), G \rangle| \leq \|E(F_{\Delta}/\beta) - E(F/\beta)\|_1 \|G\|_\omega$, desigualdad en la que el tomar límites en Δ, y de nuevo por (4) $\lim_{\Delta \in \theta} |\langle F_{\Delta}, G \rangle - \langle E(F/\beta), G \rangle| = 0$; o lo que es igual: $\lim_{\Delta \in \theta} (F_{\Delta}, G) = (E(F/\beta), G)$, como el funcional bilineal (F, G) es acotado (véase 1.8) y por tanto continuo para la convergencia en norma uno, tenemos finalmente: $(F, G) = (E(F/\beta), G)$ para todo G de $V^\infty(\beta)$, como queríamos.

4.11. Proposición

La aplicación $E(\cdot/\beta) : V^1(\theta) \to V^1(\beta)$, donde β es subálgebra de θ, es un operador lineal, positivo, contractante, de norma uno, idempotente y deja invariante a J.

Demostración: La linealidad y positividad son evidentes a partir de (4) en la proposición anterior, de ellas:

1) $|E(F/\beta)| \leq E(|F|/\beta)$, para todo F de $V^1(\theta)$; lo que junto a la proposición 1.8 ii) y la anterior justifica la contractividad

2) $\|E(F/\beta)\|_1 \leq \langle E(|F|/\beta), J \rangle = \langle |F|, J \rangle = \|F\|_1$.

Para demostrar la idempotencia, veamos que:

3) Si F es de $V^1(\beta)$ entonces $E(F/\beta) = F$.

De la proposición anterior se sigue que para todo $\Delta \in \beta : E(F/\beta)_{\Delta}(E) = F_{\Delta}(E)$ de nuevo (4) de la proposición 4.11 y la 2.10 nos proporcionan que $E(F/\beta)_{\Delta}(E)$ tiende a $E(F/\beta)(E)$ uniformemente en $E \in \theta$, luego

82
4.13. Proposición

Consideremos \((\Omega, \theta, J)\) y \(\beta\) una subálgebra de \(\theta\). Entonces para cualquier \(F\) de \(V^p(1 \leq p \leq \infty)\) la esperanza condicionada \(E(F/\beta)\) es de \(V^p(\beta)\). La aplicación \(E(\cdot/\beta): V^p(\theta) \rightarrow V^p(\beta)\) es lineal, positiva, idempotente y contractiva, además \(E(J/\beta) = J\).

Demostración: Si \(F\) es de \(V^p(\theta)\), es también de \(V^1(\theta)\) y existe \(E(F/\beta)\) como elemento de \(V^1(\beta)\), veamos que está en \(V^p(\beta)\).

En el caso \(1 \leq p < \infty\), de que \(E(F/\beta) = \lim_{\Delta} E(F/\beta)_\Delta\) con \(\Delta \in \beta\) para una de esas particiones \(\|E(F/\beta)_\Delta\|_p^p = \sum_{\Delta} |E(F(\theta)(\beta))|^p \|E(\theta)^{\|p-p\|} = \sum_{\Delta} E(F(\theta))|^p \|J(\theta)\|^{1-p} = \sum_{\Delta} \|F(\theta)\|_p \|E(\theta)\|^{1-p} = \|F\|_p\) (los \(E(\theta)\) son de \(\beta\)). Se cumple que:

\[\sup_{\Delta \in \beta} \|E(F/\beta)_\Delta\|_p = \sup_{\theta \frac{F(\theta)}{\theta}} \|F\|_p \leq \sup_{\Delta \in \beta} \|F(\theta)\|_p \|E(\theta)\|_p \|F\|_p \].

Pero como \(E(F/\beta)\) es de \(V^1(\beta)\) por la definición 4.1 \(\|E(F/\beta)(\theta)\|_p = \sup_{\Delta \in \beta} \|E(F/\beta)_\Delta\|_p\) luego \(E(F/\beta)\) tiene norma \(p\) finita.

Para el caso \(p = \infty\), tenemos \(\sup_{\beta} \frac{|E(F/\beta)(\theta)|}{J(\theta)} = \sup_{\beta} \frac{|F(\theta)|}{J(\theta)} \leq \sup_{\theta \frac{F(\theta)}{\theta}} \|F\|_\infty \) y de esto \(E(F/\beta) \in V^\infty(\beta)\).

El resto de las propiedades enunciadas en la proposición, son consecuencia inmediata de las de la esperanza condicionada en \(V^1(\theta)\).

BIBLIOGRAFÍA

4.13. Proposición

Consideremos \((\Omega, \theta, J)\) y \(\beta\) una subálgebra de \(\theta\). Entonces para cualquier \(F\) de \(V^P\) \((1 \leq p \leq \infty)\) la esperanza condicionada \(E(F/\beta)\) es de \(V^P(\beta)\). La aplicación \(E(\cdot/\beta): V^P(\theta) \rightarrow V^P(\beta)\) es lineal, positiva, idempotente y contractiva, además \(E(J/\beta) = J\).

Demostración: Si \(F\) es de \(V^P(\theta)\), es también de \(V^1(\theta)\) y existe \(E(F/\beta)\) como elemento de \(V^1(\beta)\), veamos que está en \(V^P(\beta)\).

En el caso \(1 \leq p < \infty\), de que \(E(F/\beta) = \lim_\Delta E(F/\beta)_\Delta\), con \(\Delta \in \beta\) para una de esas particiones \(\|E(F/\beta)\|_p = \sum_\Delta \|E(F/\beta)(E_\Delta)\|_p\) \(J(E_\Delta)^{1-p} = \sum_\Delta \|F(E_\Delta)\|_p\), \(J(E_\Delta)^{1-p}\) para los \(E_\Delta\) son de \(\beta\). Se cumple que:

\[
\sup_\Delta \|E(F/\beta)(E_\Delta)\|_p = \sup_\Delta \|E_\Delta\|_p \leq \sup_\Delta \|E_\Delta\|_p = \|F\|_p.
\]

Pero como \(E(F/\beta)\) es de \(V^1(\beta)\) por la definición 4.1, \(\|E(F/\beta)\|_p = \sup_\Delta \|E(F/\beta)(E_\Delta)\|_p\) luego \(E(F/\beta)\) tiene norma \(p\) finita.

Para el caso \(p = \infty\), tenemos \(\sup_\beta \|E_\Delta\|_p = \sup_\beta \|F(E_\Delta)\|_p \leq \sup_\beta \|E_\Delta\|_p = \|F\|_\infty\) y de esta \(E(F/\beta) \in V^\infty(\beta)\).

El resto de las propiedades enunciadas en la proposición, son consecuencia inmediata de las de la esperanza condicionada en \(V^1(\theta)\).

BIBLIOGRAFÍA

