ON EXACT CONDITIONALS

ENRIC TRILLAS

1. Introduction.

1.1. Let it be \(E \) a Boolean Algebra of propositions \(a, b, c, \ldots \) of which those belonging to a previous given subset \(T \subset E \) are true and the others in \(F = E - T \) are false.

When, in Commonsense Reasoning, it is affirmed a conditional relation

"If \(a \), then \(b \)"

(for short \(a \Rightarrow b \)) it is also affirmed that \(a' \cdot (b + b') + ab = a' + b \in T \), provided that boolean operations \(+ \) of join, of meet and \(' \) of negation verify the properties: \(a \in T \iff a' \in F; \)

\(a \cdot b \in T \iff a \in T \) and \(b \in T \), and \(a + b \in T \iff a \in T \) or \(b \in T \).

Then, it is supposed that the relation of Material Conditional associated with \(T \):

\[
\begin{align*}
a \rightarrow_T b & \iff a' + b \in T,
\end{align*}
\]

contains \(\Rightarrow \subset \rightarrow_T \) \([4]\).

The frequently made hypothesis \(\Rightarrow \rightarrow_T \) conveys the undesired consequence of \(a \Rightarrow b \), if \(a \in F \). That fact, important in Formal Reasoning, is not usual in Commonsense Reasoning [1]. It is rare to affirm as a piece of Commonsense Reasoning, something like

"If Madrid is the capital of France, then this is a paper on Logic".

no matter if "this is a paper on Logic" is true or false.

What is actually supposed satisfies a conditional relation is only the so-called Modus

Ponens Rules:

If \(a \in T \) and \(a \Rightarrow b \), then \(b \in F \),
that implies the **Modus Tollens Rule**:

\[
 \text{If} \quad b \in F \quad \text{and} \quad a \Rightarrow b, \quad \text{then} \quad a \in F,
\]

Definition 1.1.1. Given a set \(E \) and a non-empty subset \(T \subset E \), a binary relation on \(E \), \(\Rightarrow \subset E \times E \), is a \(T \)-conditional on \(E \) if:

\[
 a \in T \quad \text{and} \quad a \Rightarrow b \quad \text{implies} \quad b \in T.
\]

It is clear that if \(\Rightarrow \) is a \(T \)-conditional on \(E \) and \(\Rightarrow \supset \) is another relation on \(E \) such that \(\Rightarrow \supset \Rightarrow \Rightarrow \), then \(\Rightarrow \Rightarrow \) is a \(T \)-conditional on \(E \). Sometimes, when 1.1.1. holds, it is said that \(T \) is a \(t \)-set (t for true) or a **Logic State** for the relational structure \((E, \Rightarrow) \).

If \(T = \{ 1 \} \), as \(a \Rightarrow_1 b \iff a' + b = 1 \iff a \leq b \), it is clear that the \{1\}-Material Conditional in a Boolean Algebra is its partial order. \(1 \) is the largest element of the Boolean Algebra \(E \).

In what follows we will study such kind of exact relations, \(T \)-conditionals (of which \(T \)-Material Conditional is the best known) without using any algebraic structure on the ground proposition’s set \(E \). We speak of exact as more restrictive than inexact, in the sense of [2] and [4].

1.2 To chain pieces of reasoning it is convenient that a relation \(\Rightarrow \) on \(E \), modelizing a conditional, be transitive. But if it is not the case we can extend \(\Rightarrow \) to its transitive clausure \(\Rightarrow_\tau \); \(a \Rightarrow_\tau b \) means that \(a \Rightarrow a_1, a_1 \Rightarrow a_2, \ldots, a_n \Rightarrow b \), for some propositions \(a_1, \ldots, a_n \) in \(E \). It should be realized that \(\Rightarrow \subseteq \Rightarrow_\tau \).

Theorem 1.2.1. A relation \(\Rightarrow \) verifies the Rule of **Modus Ponens** if and only if \(\Rightarrow_\tau \) does.

Proof. If \(\Rightarrow_\tau \) is a \(T \)-conditional, \(\Rightarrow \) is a \(T \)-conditional. Reciprocally, if \(a \in T \) and \(a \Rightarrow_\tau b \), is \(a \in T \) and \((a \Rightarrow a_1, a_1 \Rightarrow a_2, \ldots, a_n \Rightarrow b) \) or \(a \in T \), and \(a_1 \in T \), and \(a_2 \in T \), \ldots, and \(a_n \in T \) and \(b \in T \).
On exact conditionals

It is frequently supposed that a T-conditional satisfies the weak condition of reflexivity: \(a \Rightarrow a \), for each \(a \in E \), translating the usual affirmation "If \(a \), then \(a \)". If relation \(\Rightarrow \) is not reflexive, it can be extended to its reflexive clauseure

\[\Rightarrow_r := \Rightarrow \cup \{(a, a); a \in E\} \].

Of course \(\Rightarrow \subseteq \Rightarrow_r \).

Theorem 1.2.2. A relation \(\Rightarrow \) is a T-conditional if and only if \(\Rightarrow_r \) is a T-conditional.

Proof. If \(\Rightarrow_r \) is a T-conditional is obvious that \(\Rightarrow \) does. Reciprocally, if \(a \in T \) and \(a \Rightarrow_r b \), it is \(a = b \) (and \(b \in T \)) or \(a \neq b \) and then \(a \Rightarrow b \) and \(b \in T \).

If \(\Rightarrow \) is not transitive and reflexive, we can proceed from \(\Rightarrow \) to \(\Rightarrow_{rt} \):

\[\Rightarrow_{rt} \subseteq \Rightarrow_r \subseteq \Rightarrow_{rt} \],

and \(\Rightarrow \) is a T-conditional if \(\Rightarrow_{rt} \) is a T-conditional.

2. T-conditionals.

Next result shows an intrinsic representation of the Material Conditional.

Theorem 2.1. Given \((E, T)\), the relation \(\rightarrow_T = (F \times E) \cup (T \times T) \) is the greatest T-conditional.

Proof. Let's consider the set \(C_T = \{ \Rightarrow \subseteq E \times E; \Rightarrow \text{ is a T-conditional} \} \); that set is non-empty, for example \(T \times T \) belongs to \(C_T \). Consider

\[\rightarrow_T = \bigcup_{\Rightarrow \in C_T} \Rightarrow \]
Such relation is a T-conditional: if $a \rightarrow_T b$, it should be also $a \Rightarrow b$ for some $\Rightarrow \in C_T$, and then if $a \in T$ it is $b \in T$. Obviously \rightarrow_T is the greatest T-conditional.

If $a \in T$, for having $a \rightarrow_T b$ for some $b \in E$, it should be $b \in T$. But if $a \in F$, it is always $a \rightarrow_T b$ for any $b \in E$, because $\Rightarrow = T \times T \cup \{(a,b)\}$ is a T-conditional such that $a \Rightarrow b$. Then $\rightarrow_T = (F \times E) \cup (T \times T)$.

Corollary. A relation $\Rightarrow \subseteq E \times E$ is a T-conditional if and only if $\Rightarrow \subseteq \rightarrow_T$.

Proof. By theorem 2.1 if \Rightarrow is a T-conditional, then $\Rightarrow \subseteq \rightarrow_T$. Reciprocally, if $a \in T$ and $a \Rightarrow b$ it is $a \in T$ and $a \rightarrow_T b$ and, being \rightarrow_T a T-conditional, $b \in T$.

Theorem 2.3. The T-Material Conditional is a Preorder.

Proof. For $a \in E$, it is $a \in T$ and $a \rightarrow_T a$, or it is $a \in F$ and, as $a \in E$, it is also $a \rightarrow_T a$.

Suppose $a \rightarrow_T b$ and $b \rightarrow_T c$. If $a \in F$, as $c \in E$, it is $a \rightarrow_T c$; if $a \in T$, then $b \in T$ and $c \in T$, and $a \rightarrow_T c$.

Corollary. Given a set $A \subseteq E$, the relation $\rightarrow_A = (E - A) \times E \cup A \times A$ is a preorder, the preorder by A.

If \Rightarrow is a T-conditional such that when $a \in F$ it is $a \Rightarrow b$ for any $b \in E$, then $F \times E \subseteq \Rightarrow \subseteq \rightarrow_T$.

If $\{1\} \subseteq T$ it is $\rightarrow_{\{1\}} \subseteq \rightarrow_T$ and, in that restricted sense of monotonicity, the classical material conditional $\rightarrow_{\{1\}} \leq$ is the more conservative: every conditional $a \leq b$ implies the conditional $a \rightarrow_T b$, for any set T containing 1.

3. On consequences and conditionals.

Let’s consider for any relation $\Rightarrow \subseteq E \times E$ the mapping $C_\Rightarrow : P(E) - \{\emptyset\} \rightarrow P(E) - \{\emptyset\}$,
given by [3]:

\[C_{\Rightarrow}(T) = \{ x \in E; \exists a \in T : a \Rightarrow x \}, \]

for each \(T \subseteq E, T \neq \emptyset \). It is obvious that \(C_{\Rightarrow} \) is monotone: if \(A \subseteq B \) then \(C_{\Rightarrow}(A) \subseteq C_{\Rightarrow}(B) \). It is also obvious that \(\Rightarrow_1 \subseteq \Rightarrow_2 \) implies \(C_{\Rightarrow_1}(A) \subseteq C_{\Rightarrow_2}(A) \).

Theorem 3.1. Relation \(\Rightarrow \) is a T-conditional, for \(\emptyset \neq T \subseteq E \), if and only if \(C_{\Rightarrow}(T) \subseteq T \).

Proof. If \(C_{\Rightarrow}(T) \subseteq T \), then if \(a \in T \) and \(a \Rightarrow b \), as \(b \in C_{\Rightarrow}(T) \), it is \(b \in T \), and \(\Rightarrow \) is T-conditional. Reciprocally, if \(\Rightarrow \) is a T-conditional and \(x \in C_{\Rightarrow}(T) \), as \(a \Rightarrow x \) for some \(a \in T \), it is \(x \in T \).

It should be pointed out that, if \(T \) is finite, \(C_{\Rightarrow}(T) \) should not be also finite. Just consider \(E = \mathbb{N}, \Rightarrow = \mathbb{N} \times \mathbb{N} \) and \(T = \{ 1 \} \): it is \(C_{\Rightarrow}(T) = \mathbb{N} \). Nevertheless, being \(E \) finite or \(\Rightarrow \) finite, if \(T \) is finite so it is \(C_{\Rightarrow}(T) \).

Theorem 3.2. A relation \(\Rightarrow \) is reflexive if and only if \(T \subseteq C_{\Rightarrow}(T) \) for any \(\emptyset \neq T \subseteq E \).

Proof. If \(\Rightarrow \) is reflexive, as \(a \Rightarrow a \) for each \(a \in T \), it is \(a \in C_{\Rightarrow}(T) \) and \(T \subseteq C_{\Rightarrow}(T) \). Reciprocally, for any \(a \in E \) it is \(\{ a \} \subseteq C_{\Rightarrow}(\{a\}) \), and \(a \Rightarrow a \).

Corollary. A reflexive relation \(\Rightarrow \) is a T-conditional iff \(T = C_{\Rightarrow}(T) \).

Theorem 3.3. A relation \(\Rightarrow \) is transitive if and only if \(C_{\Rightarrow}(C_{\Rightarrow}(T)) \subseteq C_{\Rightarrow}(T) \), for any non-empty subset \(T \) of \(E \).

Proof. If \(a \Rightarrow b \) and \(b \Rightarrow c \), from \(b \in C_{\Rightarrow}(\{a\}) \) and \(c \in C_{\Rightarrow}(\{b\}) \) it follows \(c \in C_{\Rightarrow}(\{b\}) \subseteq C_{\Rightarrow}(C_{\Rightarrow}(\{a\})) \), and \(a \Rightarrow c \). Reciprocally, being \(\Rightarrow \) transitive, if \(x \in C_{\Rightarrow}(C_{\Rightarrow}(T)) \) it exists some \(b \in C_{\Rightarrow}(T) \) such that \(b \Rightarrow x \); but it also exists some \(c \in T \) such that \(c \Rightarrow b \): then \(c \Rightarrow x \), or \(x \in C_{\Rightarrow}(T) \).
Corollary. If \(\Rightarrow \) is transitive, it is a \(C_{\Rightarrow}(T) \)-conditional for any \(\emptyset \neq T \subset E \).

Corollary. If \(\Rightarrow \) is a preorder, it is a \(C_{\Rightarrow}(T) \)-conditional and \(T \subset C_{\Rightarrow}(T) \) for any \(\emptyset \neq T \subset E \).

Corollary. A reflexive relation \(\Rightarrow \) is transitive iff \(C_{\Rightarrow}(C_{\Rightarrow}(T)) = C_{\Rightarrow}(T) \) for each \(T \subset E \), \(T \neq \emptyset \).

Theorem 3.4. Mapping \(C_{\Rightarrow} \) is a Tarski’s Consequences Operator [3] iff \(\Rightarrow \) is a preorder.

Proof. Is an immediate consequence of theorem 3.2 and 3.3. Then, being \(\Rightarrow \) a preorder, it has complete sense to say that \(b \) is a consequence of \(a \), each time that \(a \Rightarrow b \).

Theorem 3.5. If \(\Rightarrow \) is a preorder, for any \(\emptyset \neq T \subset E \), it is \(C_{\Rightarrow}(T) \) the smallest subset of \(E \) that contains \(T \) and for which \(\Rightarrow \) is a conditional.

Proof. The set \(\mathcal{C} = \{X \subset E; T \subset X \text{ and } \Rightarrow \text{ is and } X \text{-conditional}\} \) is not-empty because \(E \in \mathcal{C} \). Let it be

\[
\overline{T} = \bigcap_{C \in \mathcal{C}} X.
\]

It is \(T \subset \overline{T} \); then \(C_{\Rightarrow}(T) \subset C_{\Rightarrow}(\overline{T}) \). It is \(\overline{T} \subset C_{\Rightarrow}(\overline{T}) \); if \(x \in C_{\Rightarrow}(\overline{T}) \) it exists some \(a \in \overline{T} \) such that \(a \Rightarrow x \) and, as \(\Rightarrow \) is and \(\overline{T} \)-conditional, \(x \in \overline{T} \) and \(C_{\Rightarrow}(\overline{T}) \subset \overline{T} \); but as \(\Rightarrow \) is a \(C_{\Rightarrow}(T) \)-conditional it is \(\overline{T} \subset C_{\Rightarrow}(T) \) and, finally, \(\overline{T} = C_{\Rightarrow}(T) \).

Corollary. Given a preorder \(\Rightarrow \) on \(E \) and a subset \(T \subset E \), \(T \neq \emptyset \), it suffices to extend \(T \) to \(C_{\Rightarrow}(T) \) for having that \(\Rightarrow \) is a \(C_{\Rightarrow}(T) \)-conditional, provided that \(\Rightarrow \) does not to be a \(T \)-conditional.

Then, each time that \(a \Rightarrow b \) for both \(a \) and \(b \) in \(T \), we can say that \(b \) is a consequence of \(a \). It should be remarked that, if \(\Rightarrow \) is not a preorder it can be extended to the preorder \(\Rightarrow_{rt} \) for which follows the last assertion. In any case, if \(\Rightarrow \) is not a preorder, but it is a
On exact conditionals

T-conditional, as $\Rightarrow \subset T$, it follows

\[C_{\Rightarrow}(T) \subset C_{\Rightarrow A}(T), \]

and each $x \in C_{\Rightarrow}(T)$ can be considered as a consequence of T.

Theorem 3.6. Given (E, \Rightarrow) and a function $\mu : E \to [0,1]$ such that "If $a \Rightarrow b$, then $\mu(a) \leq \mu(b)$", then, for each $\epsilon \in (0,1]$, is $\Rightarrow a\mu^{-1}([\epsilon,1])$-conditional.

Proof. If $a \in \mu^{-1}([\epsilon,1])$ and $a \Rightarrow b$, it is $\epsilon \leq \mu(a) \leq 1$ and $\mu(a) \leq \mu(b) \leq 1$, then $\epsilon \leq \mu(b) \leq 1$ and $b \in \mu^{-1}([\epsilon,1])$.

For example, if E is a Boolean Algebra and p is a probability on E, as $a \leq b$ implies $p(a) \leq p(b)$, the partial order \leq is a P_ϵ-conditional, being

\[P_\epsilon = \{ x \in E : \epsilon \leq p(x) \leq 1 \}, \]

for each ϵ in $(0,1]$.

The last theorem opens the door to exactify some parts of Approximate Reasoning [5].

References.

Instituto Nacional de Técnica Aeroespacial
Departamento de Inteligencia Artificial
Universidad Politécnica de Madrid
Madrid, Spain.