ON INARIANT MEASURES FOR THE TEND MAP

F. BOFILL

ABSTRACT

The bifurcation structure of a one parameter dependent piecewise linear population model is described. An explicit formula is given for the density of the unique invariant absolutely continuous probability measure \(\mu_\beta \) for each parameter value \(\beta \). The continuity of the map \(\beta \to \mu_\beta \) is established.

1. We consider a piecewise linear simplification of the logistic model, given by the dynamical system (Fig. 1a)

\[
f_\beta(x) = \begin{cases}
\beta x & \text{if } x \in [0,1/2] \\
\beta(1-x) & \text{if } x \in [1/2,1], \quad \beta \in (1,2).
\end{cases}
\]

Every point \(x \in (0,1) \) enters under iteration the interval \([f_\beta^2(1/2), f_\beta(1/2)]\) and keeps in it. The dynamics of the system has its interest in this interval. If we restrict \(f_\beta \) to it and rescale to \([0,1]\) we obtain the function (Fig. 1b)

\[
F_\beta(x) = \begin{cases}
\beta(x-1) + 2 & \text{if } x \in [0,c] \\
\beta(-x+1) & \text{if } x \in [c,1], \quad c = 1 - 1/\beta.
\end{cases}
\]

\(F_\beta(x) \) has a fixed point at \(x^* = \beta/(\beta + 1) \).

*This paper was written during a visit to the Mathematics Institute of Warwick University. The author gratefully acknowledges Professor W. Parry for several helpful conversations and the financial support of the C.I.R.I.T. de la Generalitat de Catalunya for this visit.
The variation of the parameter β gives rise to a period doubling bifurcation structure where the attractive period is constituted by intervals.

More precisely the bifurcation appears for the values $\beta = 2^{\frac{1}{2}}, 2^{\frac{3}{4}}, \ldots, 2^{\frac{k}{2}}, \ldots$.

If $2^{\frac{1}{2}} \leq \beta \leq 2$ (which corresponds to $F_\beta(0) \leq x^*$) the set of points whose orbit under F_β is not dense in $[0,1]$ has null Lebesgue measure. In particular F_β is transitive.

For $1 < \beta < 2^{\frac{1}{2}}$ ($F_\beta(0) > x^*$) the disjoint intervals $I_1 = [0, F_\beta^2(0)]$, $I_2 = [F_\beta(0), 1]$ are mapped onto each other and are invariant under $F_\beta^2 : F_\beta^2 I_2$ is conjugated to $F_{\beta'}$ on $[0,1]$.

Every $x \in [0,1]$, $x \neq x^*$ is attracted under F_β to I_1, I_2.

Inductively one can show that in the range $2^{\frac{1}{2^{2^n}}} \leq \beta < 2^\frac{1}{2^n}$, $n \geq 1$, there exists an F_β-attractive periodic chain formed by 2^n disjoint closed $F_{\beta'}^{2^n}$-invariant subintervals $I_{i_1, i_2, \ldots, i_n}$ ($i_j \in \{1, 2\}$), in $[0,1]$ and that on $I_{2,2,\ldots,2} = [F_{\beta'}^{2^{2^n}-1}(0), 1]$, $F_{\beta'}^{2^n}$ is conjugated to the transitive function $F_{\beta'}^{2^{\frac{1}{2}}} (2^{\frac{1}{2}} \leq \beta^{2^n} < 2)$, on $[0,1]$. (Figure 2).
The bijection \(v_{2,3,\ldots,2} \rightarrow v = \frac{1}{2^n} \sum_{i=0}^{2^n-1} F^i_\beta \cdot v_{2,3,\ldots,2} \) identifies the probabilities on \(I_{2,3,\ldots,2} \) invariant under \(F^{2^n}_\beta \approx F^{n+1}_\beta \) with the probabilities on \([0,1]\) invariant under \(F_\beta \) vanishing on the fixed points of \(F_\beta, F^{2}_\beta, \ldots, F^{2^n-1}_\beta \), or, equivalently, on \([0,1] - \cup I_{1,\ldots,n}\).

2.- The results in papers [5] and [6], when applied to the model \(F_\beta \), ensure the existence of a unique absolutely continuous \(F_\beta \)-invariant probability measure \(\mu_\beta \).

Take \(s_0 = 1 \) and, respectively, \(s_n = 1,0,-1 \) when \(F^{n+1}_\beta(0) < 1 - \frac{1}{\beta} , F^n_\beta(0) = 1 - \frac{1}{\beta} \), \(F^n_\beta(0) > 1 - \frac{1}{\beta} , n \geq 1 \). Define \(\Delta_0 = 1 \), and, inductively \(\Delta_n = \Delta_{n-1} - 1 \), \(\Delta_n \geq 1 \).

Take \(\rho_\beta(x) = \sum_{n=0}^{\infty} \Delta_n \frac{\lambda}{\beta^n} \chi_{\{F^n_\beta(0),0\}}(x) \) and let \(K_\beta = \int_0^1 \rho_\beta(x)dx \) be a normalizing factor.

\[\mu_\beta(A) = \frac{1}{K_\beta} \int_0^1 \rho_\beta(x)dx \] is the unique \(F_\beta \)-invariant absolutely continuous probability measure.

If \(2^{1/\beta} < \beta < 2^{1/\beta} \), \(\rho_\beta(x) > 0 \) for \(x \in I_{1,\ldots,n} \) and \(\rho_\beta(x) = 0 \) for \(x \in [0,1] - \cup I_{1,\ldots,n} \).
We refer to [7], [8] for explicit versions of invariant measures in respect of other related piecewise linear maps on the interval.

3.- Given $\beta \in (1,2]$ let s_n^β, the sequence defined in 2.- corresponding to F_β.

If β_0 is such that $s_n^\beta_0 \neq 0$, $n \geq 1$, the map $\beta \rightarrow \rho_\beta(x)$ from $(1,2]$ to $L^1[0,1]$ is continuous at $\beta = \beta_0$.

Let β_0 be such that $s_n^\beta_0 = 0$ for some n, and let $M > 0$ be the smallest integer with this property. If

$$\omega = \frac{1}{\beta_0^{M+2}} + \frac{1}{(\beta_0^{M+2})^2} + \ldots$$

then $\rho_\beta(x) \rightarrow (1 + \omega)\rho_{\beta_0}(x)$ when $\beta \uparrow \beta_0$ and $\rho_\beta(x) \rightarrow (1 - \omega)\rho_{\beta_0}(x)$ when $\beta \downarrow \beta_0$.

As a consequence one has the following

Theorem. The map $\beta \rightarrow \frac{1}{\int \rho_\beta(x)dx}$ is continuous for $\beta \in (1,2]$.

And, if one takes in account the weak topology in the space of measures,

Corollary. The map $\beta \rightarrow \mu_\beta$ is continuous.

References.

On Invariant Measures for the Tend Map

E.T.S. d'Enginyers Industrials de Terrassa
Univ. Politècnica de Catalunya
Colón 11, 08222 Terrassa. SPAIN.