ON THE ABSOLUTE RIESZ SUMMABILITY FACTORS FOR FOURIER SERIES AND CONJUGATE SERIES

by

PREM CHANDRA

1. Definitions and Notations.—Let \(L = L(w) \) be a continuous, differentiable and monotonic increasing \((\nearrow)\) function of \(w \), and let it tend to infinity with \(w \). Suppose that \(\sum_{n=1}^{\infty} a_n \) is a given infinite series then

\[
\sum_{n=1}^{\infty} a_n \quad \text{is summable}
\]

or symbolically

\[
\sum_{n=1}^{\infty} a_n \in \mid R, L_r \mid (r > 0),
\]

if

\[
\int_{-\infty}^{\infty} \frac{L'(w)}{|L(w)|^{r+1}} \left| \sum_{n=1}^{\infty} |L(w) - L(u)|^{-1} L(u) a_n \right| \, dw < \infty,
\]

where \(A \) is a finite positive number (Obrechkoff [4], [5]).

Let \(f(t) \) be a periodic function with period \(2\pi \) and integrable in the sense of Lebesgue over \((-\pi, \pi) \). Without any loss of generality, the constant term of the Lebesgue-Fourier series of \(f(t) \) can be taken to be zero so that

\[
\int_{-\pi}^{\pi} f(t) \, dt = 0,
\]
and
\[f(t) \sim \sum_{n=1}^{\infty} \left(a_n \cos nt + b_n \sin nt \right) = \sum_{n=1}^{\infty} A_n(t). \]

Then the conjugate series of Lebesgue-Fourier series is
\[\sum_{n=1}^{\infty} \left(b_n \cos nt - a_n \sin nt \right) = \sum_{n=1}^{\infty} B_n(t). \]

We use the following notations:

\[\Phi(t) = \frac{1}{2} \left[f(x + t) + f(x - t) \right]. \quad (1.1) \]
\[\Psi(t) = \frac{1}{2} \left[f(x + t) - f(x - t) \right]. \quad (1.2) \]
\[\Phi_1(t) = t^{-1} \int_0^t \Phi(u) \, du. \quad (1.3) \]
\[\Psi_1(t) = t^{-1} \int_0^t \Psi(u) \, du. \quad (1.4) \]
\[K(w, t) = \sum_{n \in w} \frac{L(n)}{\alpha(n)} \cos nt. \quad (1.5) \]
\[\bar{K}(w, t) = \sum_{n \in w} \frac{1}{\alpha(n)} \sin nt. \quad (1.6) \]

2. **Introduction.**—In 1948, Cheng [1] proved the following:

Theorem A.—If, for \(0 < \delta < 1 \),
\[\Phi_\delta(t) \in BV(0, \pi) \]

1. \(f(x) \in BV(a, b) \) we mean
\[\int_a^b |df(x)| < \infty. \]
then
\[\sum_{n=1}^{\infty} A_n(x) \log (n + 1))^{-\epsilon} \in \mathbb{R}, \epsilon \delta, \]
where \(\epsilon > 0 \).

We observe that above theorem is the particular case of a theorem of Dikshit [2].

Generalising Theorem A for \(\delta = 1 \), Lal [3] has proved the following:

Theorem B.—If \(\Phi(t) \in B V (0, \pi) \), then
\[\sum_{n=1}^{\infty} A_n(x)/(\log (n + 1))^{\epsilon \delta} \in \mathbb{R}, \exp |(\log \omega)\delta|, 1 |, \]
for \(\epsilon > 0 \) and \(d > 1 \).

The following analogue of Theorem B, for allied series of Fourier series, also has been established by Lal [3].

Theorem C.—If \(\Psi_1(t) \in B V (0, \pi) \) and \(\Psi_1(t) | t^{-1} \) is integrable in the sense of Lebesgue over \((0, \pi) \), then
\[\sum_{n=1}^{\infty} B_n(x)/(\log (n + 1))^{\epsilon \delta} \in \mathbb{R}, \exp |(\log \omega)\delta|, 1 |, \]
\(\epsilon > 0 \) and \(d > 1 \).

Some of the objects of this paper are the following:
1. To generalise Theorem B and Theorem C.
2. To obtain refinements of Theorem A for \(\delta = 1 \) and Theorem B by taking more rapidly increasing type of Riesz means and less effective summability factors.
3. To obtain refinements of Theorem C by dropping the condition (2) of Theorem C and taking more rapidly increasing type of Riesz means.

We, precisely, prove the following theorems.

Theorem 1.—Let \(L(w) \) and \(a(w) \) be positive and satisfying, for large \(w \), the following conditions:
\[|L(w)/a(w)| \not\to \text{ with } w \geq w_0 \quad (2.1) \]
and
\[\int_{\mathbb{R}} \left| \frac{L'(w)}{L(w)} a(w) \right| \, dw < \infty. \tag{2.2} \]

Then, if
\[\Phi_1(t) \in B V(0, \pi), \sum_{n=1}^{\infty} A_n(x/a(n)) \in \| R, L(w), 1 \|. \]

Theorem 2.—Let \(L(w) \) and \(a(w) \) be positive and satisfying, for large \(w \), (2.1) and (2.2). Then, if
\[\Psi_1(t) \in B V(0, \pi), \sum_{n=1}^{\infty} B_n(x/a(n)) \in \| R, L(w), 1 \|, \]

whenever
\[\sum_{n=1}^{\infty} n^{-1} (a(n))^{-1} < \infty. \tag{2.3} \]

3. We shall use the following lemmas in the proof of the theorems.

Lemma 1. (Obrechkoff [4], [5]).—If
\[\Sigma a_n \in \| R, L, r' \mid (r \geq 0), \]
then
\[\Sigma a_n \in \| R, L, r \mid (r' > r). \]

Lemma 2.—If \(L(w) \) and \(a(w) \) be positive and satisfy (2.1) then, uniformly in \(0 < t < \pi \) and for large \(w \),
\[\frac{K(w, t)}{\overline{K}(w, t)} = O \left\{ \frac{L(w)}{t a(w)} \right\}. \]

Proof.—First we consider \(K(w, t) \). We have, where \([w]\) denotes the integral part of \(w \),
\[K(w, t) = \sum_{n=-1}^{[w]} \frac{L(n)}{a(n)} \cos nt = \left(\sum_{n=1}^{[w]} + \sum_{[w]+1}^{[w]} \right) \left(\frac{L(n)}{a(n)} \cos nt \right) = P + Q, \]
say. Now, since by (2.1)

$$|L(\alpha)/\alpha(\alpha)| \not\in \text{ with } n \geq [w_0] + 1$$

we have by Abel’s lemma

$$Q = O \left\{ \frac{L(w)}{\alpha(w)} \max_{[w_0] \leq \{w\} \leq w - 1} \left| \sum_{n = \lfloor w \rfloor + 1}^{n-t} \cos nt \right| \right\} = O \{t^{-1} L(w)/\alpha(w)\},$$

uniformly in $0 < t < \pi$. And we observe that $P = O(1)$. Therefore combining the results for P and Q, we get

$$K(w, t) = O \{L(w)/\alpha(w)\},$$

The proof for $K(w, t)$ runs parallel to that of $K(w, t)$.

4. Proof of Theorem 1.—Since,

$$A_n(x) = \frac{2}{\pi} \int_0^\pi \Phi(t) \cos nt dt,$$

we have, integrating by parts and using $\Phi_1(\pi) = 0$,

$$A_n(x) = \frac{2}{\pi} \left[t \Phi_1(t) \cos nt \right]^\pi_0 + \frac{2}{\pi} \int_0^\pi \Phi_1(t) nt \sin nt dt =$$

$$= \frac{2}{\pi} \int_0^\pi \Phi_1(t) nt \sin nt dt = \frac{2}{\pi} \left[\Phi_1 \left(\frac{\sin nt}{n} - t \cos nt \right) \right]^\pi_0 -$$

$$- \frac{2}{\pi} \int_0^\pi \left(\frac{\sin nt}{n} - t \cos nt \right) d \Phi_1(t) =$$

$$= - \frac{2}{\pi} \int_0^\pi \left(\frac{\sin nt}{n} - t \cos nt \right) d \Phi_1(t).$$

The series

$$\sum_{n=1}^\infty A_n(x)/\alpha(\alpha) \in \mathbb{R}, L(w), 1$$
if
\[
\int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n \in \mathbb{N}} \frac{L(n)}{a(n)} \int_{0}^{\pi} \left(\frac{\sin nt}{n} - t \cos nt \right) d\Phi_1(t) \right| d\omega,
\]
is convergent.

Since,
\[
\int_{0}^{\pi} \left| d\Phi_1(t) \right| < \infty
\]
by hypothesis of Theorem 1, it is sufficient, for the proof of Theorem 1, to show that
\[
I = \int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n \in \mathbb{N}} \frac{L(n)}{a(n)} \left(\frac{\sin nt}{n} - t \cos nt \right) \right| d\omega = O(1),
\]
uniformly in $0 < t < \pi$. Now, by (1.5) we have
\[
I \leq t \int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| K(w, t) \right| d\omega + \int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n \in \mathbb{N}} \frac{L(n)}{a(n)} \frac{\sin nt}{n} \right| d\omega = I_1 + I_2,
\]
say.

By Lemma 2, we have
\[
I_1 = O\left(\int_{\omega}^{2\pi} \frac{L'(w)}{L(w) a(w)} d\omega \right) = O(1),
\]
by (2.2). And for some suitable integer $[w_n]$ such that $\{L(n)/a(n)\} \not\in$ whenever $n \geq [w_n] + 1$, we write
\[
I_2 \leq \int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n=0}^{[w_n]} \frac{L(n)}{n a(n)} \frac{\sin nt}{n} \right| d\omega + \int_{\omega}^{2\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n=[w_n]+1}^{[w_n]} \frac{L(n)}{n a(n)} \frac{\sin nt}{n} \right| d\omega = I_{2,1} + I_{2,2},
\]
say.
Now, since
\[
\sum_{n=0}^{[\omega n]} \frac{L(n) \sin nt}{n \mu(n)} = O(1),
\]
we follow that
\[
I_{2.1} = O \left(\int_{\pi}^{\pi} \frac{L'(w)}{L(w) \mu(w)} \left(\max_{[\omega n]+1 \leq r \leq [\omega n]} \left| \sum_{\pi=r}^{[\omega n]} \frac{\sin nt}{n} \right| \right) \, dw \right) = O(1),
\]
and by using Abel's lemma, in view of (2.1), we have
\[
I_{2.2} = O \left(\int_{\pi}^{\pi} \frac{L'(w)}{L(w) \mu(w)} \left(\max_{[\omega n]+1 \leq r \leq [\omega n]} \left| \sum_{\pi=r}^{[\omega n]} \frac{\sin nt}{n} \right| \right) \, dw \right) =
\[
= O \left(\int_{\pi}^{\pi} \frac{|L'(w)|}{L(w) \mu(w)} \, dw \right) \quad \text{(uniformly, } 0 < t < \pi) = O(1)_{\nu}
\]
by (2.2).

This completes the proof of Theorem 1.

5. Proof of Theorem 2.—We have
\[
B_n(x) = \frac{2}{\pi} \int_{0}^{\pi} \Psi_1(t) \sin nt \, dt =
\]
\[
= \frac{2}{\pi} \left[\Psi_1(t) \sin nt \right]_0^\pi - \frac{2}{\pi} \int_{0}^{\pi} \Psi_1(t) nt \, d(t) =
\]
\[
= -\frac{2}{\pi} \int_{0}^{\pi} \Psi_1(t) nt \, d(t) = \frac{2 \Psi_1(\pi) \cos nt}{n \pi} + \frac{2 \Psi_1(\pi) \cos nt}{n \pi} +
\]
\[
+ \frac{2}{\pi} \int_{0}^{\pi} \left(t \sin nt + \frac{\cos nt}{n} \right) \, dt.
\]

Integrating by parts.
The series
\[\sum_{n=1}^{\infty} B \frac{x}{\alpha(n)} \in R, L(w), 1, \]

if
\[\int_{0}^{\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n \leq w} \frac{L(n)}{\alpha(n)} B(x) \right| dw \]

is convergent.

Since, by the hypothesis of the theorem, \(\Psi_1(0) \) and \(\Psi_1(\pi) \) are finite and
\[\int_{0}^{\pi} |d\Psi_1(t)| < \infty, \]

therefore to prove the theorem it is sufficient to show that
\[I_1 = t \int_{0}^{\pi} \frac{L'(w)}{|L(w)|^2} |K(w, r)| dw = O(1), \]

uniformly in \(0 < t < \pi \) and
\[I_2 = \int_{0}^{\pi} \frac{L'(w)}{|L(w)|^2} \left| \sum_{n \leq w} \frac{L(n)}{n \alpha(n)} \right| dw < \infty. \]

The boundedness of \(I_1 \), uniformly in \(0 < t < \pi \), runs parallel to that of the boundedness of \(I_1 \) of Theorem 1. And the boundedness of \(I_2 \) follows by using Lemma 1 since, by (2.3),
\[\sum_{n=1}^{\infty} n^{-1} (\alpha(n))^{-1} < \infty. \]

Thus the Proof of Theorem 2 is complete.

-6. We give some of the corollaries of Theorem 1.
COROLLARY 1.—If \(\Phi_1 (t) \in B_1 (0, \pi) \), then

\[
\sum_{n=1}^{\infty} a_n (x) (\log (n + 1))^c \in \mathbb{R}, \exp \left\{ (\log x)^d (\log \log x)^{-1} \right\}, 1 \ |
\]

where \(c > 0 \) and \(h > 1 \).

PROOF.—Let, for \(c > 0 \) and \(h > 1 \),

\[
a (w) = (\log (w + 1))^c \quad \text{and} \quad L (w) = \exp \left\{ (\log w)^d (\log \log w)^{-1} \right\}
\]

in Theorem 1. Then we observe that the conditions (2.1) and (2.2) are satisfied and therefore we follow the proof.

REMARK 1.—We observe that Corollary 1 is the improvement over the particular case, \(s = 1 \), of Cheng’s result (Theorem A).

We also prove the following:

COROLLARY 2.—If \(\Phi_1 (t) \in B_1 (0, \pi) \), then

\[
\sum_{n=1}^{\infty} a_n (x) (\log (n + 1) \log \log (n + 2))^{-d} \in \mathbb{R}, \exp \left\{ (\log w)^d \right\}, 1 \ |
\]

for \(d > 1 \).

PROOF.—Its proof follows from Theorem 1 by taking

\[
a (w) = (\log (w + 1) \log (w + 2))^d
\]

and

\[
L (w) = \exp \left\{ (\log w)^d \right\} (d > 1).
\]

REMARK 2.—It is easy to observe that we replace the absolute summability factor

\[
(\log (n + 1))^{-d-\epsilon} \quad (\epsilon > 0, \ d > 1).
\]

of Theorem B by

\[
(\log (n + 1))^{-d} (\log \log (n + 2))^{-d} (d > 1)
\]

in Corollary 2.
7. Finally we give two corollaries of Theorem 2 which improve Theorem C by dropping the condition (2) of Theorem C and by taking less effective absolute summability factors than Theorem C.

Corollary 3.—If \(\Psi (t) \in BV (0, \pi) \) then, for \(d > 1 < c, \)

\[
\sum_{n=1}^{\infty} B_n(x)/(\log (n+1))^{d'(\log \log (n+2))} \in |K, \exp |(\log \omega)^s|, 1 |.
\]

Corollary 4.—If \(\Psi (t) \in BV (0, \pi) \) then, for \(d + c - 1 > 0 < c, \)

\[
\sum_{n=1}^{\infty} B_n(x)/(\log (n+1))^{d'c} \in |R, \exp |(\log \omega)^s|, 1 |.
\]

References

Address: 402, West-Ghamapur, Jabalpur, India.