THE JORDAN-HOLDER THEOREM FOR SEMIRINGS

by

FRANCISCO Poyatos

§ 1. Introduction

The object of this paper is to prove the Green and Jordan-Hölder theorems in semirings. We follow Rees [11], Green [5], Clifford and Preston [2]. This work is similar to [7] and generalizes [8] and [9]. Although some proofs are parallels to that for semigroups, we explain them here to obtain a complete and self-contained exposition.

A semiring is a non-empty set $A \neq \emptyset$ together with two associative operations on A, named «addition» (+) and «multiplication» (\cdot) (or juxtaposition), so that multiplication is left and right distributive with respect to addition. As is customary, if B, C are subsets of A and d is an element of A, we write

$$B + C = \{ b + c : b \in B, c \in G \}, \quad B \cdot C = B \cdot C =$$

$$= \{ b \cdot c : b \in B, c \in C \}, \quad B + d = B +$$

$$+ \{ d \}, \quad B \cdot d = B \cdot d = B \cdot \{ d \}.$$

A subset D of A is called subsemiring of A if it verifies $D + D \subseteq D$ and $D \cdot D \subseteq D$. We say that $a \subseteq A$ is a bi-ideal of the semiring A if a satisfies

$$(1) \quad a + A \subseteq a, \quad A + a \subseteq a,$$

and

$$(2) \quad a \cdot A \subseteq a, \quad A \cdot a \subseteq a.$$
We call a bi-ideal of A because is ideal of the semigroups $(A, +)$ and (A, \cdot). We would remark that the word "bi-ideal" was used in Algebra with other meanings [6], [12]. We consider the empty set \emptyset as a bi-ideal and as a subsemiring, called trivial, of every semiring.

An element $w \in A$ will be called distinguished element of the semiring A if it satisfies $w + x = w + y$, $x + w = y + w$ and $x \cdot w = x \cdot y$, for all $x \in A$. A semiring cannot contain two different distinguished elements. We shall always call $\{w\}$ the distinguished element of every semiring, if it exists. A semiring with distinguished element w will be named w-semiring and W will always signify the set $\{w\}$.

A bi-ideal $b \neq \emptyset$ of the semiring A generates the following binary relation on A:

$$x \mathrel{R_b} y \iff (x = y) \text{ or } (x \in b \text{ and } y \in b),$$

which is an equivalence compatible with the two operations of A, that is, R_b is a congruence on A. We define A/b, called the Rees-factor semiring of A modulus b, in this way

$$A / b = A / R_b = (A - b) \cup \{w\},$$

"$-$" meaning the complement set and $\{w\}$ the distinguished element of A/R_b.

The reader will verify:

Proposition 1.—i) The intersection of any family of bi-ideals of a semiring A is a bi-ideal of A.

ii) The set-theoretical union of any family of bi-ideals of A is also a bi-ideal of A.

iii) If m_i, $i = 1, \ldots, p$ are non-trivial bi-ideals of A, then

$$m_1 + m_2 + \ldots + m_p$$

is a non-trivial bi-ideal of A so that

$$m_1 + m_2 + \ldots + m_p \subseteq m_1 \cap m_2 \cap \ldots \cap m_p.$$
§ 2. Simplicity of semirings and minimality of bi-ideals

Definitions.—Improper bi-ideals of the semiring A are A, W (if W exists in A) and \emptyset. A proper bi-ideal of A is every bi-ideal of A that is not improper. We say that a w-semiring A is w-symmetric (or symmetric) if

$$(3) \quad A + W,$$

and

$$(4) \quad (A + A = W) \quad \text{or} \quad (A \cdot A = W).$$

A primitive symmetric semiring will be a w-symmetric semiring without proper bi-ideals. A semiring A will be called R-simple (R-, from Rees) or simple if and only if A is not w-symmetric and A contains no proper bi-ideal. For any w-semiring A, $k(A) = W$, and we can introduce the concept of w-minimal bi-ideal, as usual, in this way: the bi-ideal m of the w-semiring A is w-minimal if and only if W is the only non-empty bi-ideal of A strictly contained in m.

Proposition 2.—Every w-minimal bi-ideal m of A constitutes a symmetric or simple semiring.

Proof.—By proposition 1) iii) $(m + m)$ is a bi-ideal of A contained in m. Since m is w-minimal,

$$m + m = W \quad \text{or} \quad m + m = m.$$

In the first case m is symmetric. In the second case, if also $m \cdot m = W$, then m is symmetric and the proposition is proved.

Let m be a w-minimal bi-ideal of A so that

$$m + m \pm W, \quad m \cdot m \pm W.$$

We will show, arriving at a contradiction, that m is simple. We have obtained

$$(5) \quad m + m = m.$$
Suppose \(u \) is a proper bi-ideal of \(m \). Then
\[
t = m + m \cup m + m, \ u \not\in u
\]
will be a bi-ideal of \(A \) contained in \(u \), for all \(u \in u \); therefore
\[
(6) \quad m + m \cup m + m = W, \ \forall u \in u.
\]
Consequence of (5), (6) and definitions is
\[
(7) \quad m \cup m = W, \ \forall u \in u.
\]
The set
\[
V \left(m \right) = \left\{ y \in m / m \ y \ m = W \right\}
\]
forms a bi-ideal of \(A \) so that
\[
u \subset V \left(m \right) \subset m;
\]
by the \(u \)-minimality of \(m \):
\[
V \left(m \right) = m;
\]
that is to say
\[
(8) \quad m \cdot m \cdot m = W
\]
Consequence of (8) and hypothesis is
\[
W \subset m \cdot m \subset m
\]
strictly. From this and (5) follows
\[
W \subset m \cdot m = (m + m) \cup (m + m) \subset m \ m + m \ m + m \ m + + m \ m \subset m + m + m
\]
But

\((m + m m + m)\)

forms a bi-ideal of \(A \) contained in \(m \). Then

\[m + m \cdot m + m = m. \]

In virtue of this equality together with (8), we deduce

\[m \cdot m = (m + m m + m) m \subseteq m m + m m m + \]
\[+ m m \subseteq m + W + m = W \]

and so we arrive at the contradiction \(m \cdot m = W \).

In another place [10] we show that if \(m \) is a \(w \)-minimal bi-ideal of \(A \) which satisfies

\[m + m = m, \ m \cdot m = W, \]

then it is possible that \(m \) has proper bi-ideals.

Proposition 3.—The bi-ideal kernel \(k \{ A \} \) of a semiring \(A \) (if it exists) is a simple semiring.

In the case that \(A \) is a \(w \)-semiring, the \(k \{ A \} = W \) is simple. We suppose that \(A \) has not distinguished element and that \(u \) is a proper bi-ideal of \(k \{ A \} \). Then

\[t = k \{ A \} + k \{ A \} u k \{ A \} + k \{ A \} \]

forms a bi-ideal of \(A \) contained in \(u \), a contradiction.

Proposition 4.—Let \(A \) be a \(w \)-semiring which only contains as non-empty bi-ideals \(A \) and \(W \); then \(A \) is primitive symmetric or simple semiring.

This proposition is evident.
§ 3. Isomorphism Theorems

We make the convention $A/\emptyset = A$ for any semiring A. Also we establish $T/T = W$ for any bi-ideal or subsemiring T of A.

Proposition 5.—Let k and P be a bi-ideal and a subsemiring of the semiring A, respectively; then

i) $k \cup P$ is a subsemiring of A and k forms a bi-ideal of $k \cup P$.

ii) $k \cap P$ is a bi-ideal of the subsemiring P.

iii) $\frac{k \cup P}{k} \approx \frac{P}{k \cap P}$

Proof.—i) $$(k \cup P) + (k \cup P) \subseteq (k + k) \cup (k + P) \cup (P + k) \cup (P + P) \subseteq k \cup P,$$

$$(k \cup P) \cdot (k \cup P) \subseteq (k \cdot k) \cup (k \cdot P) \cup (P \cdot k) \cup (P \cdot P) \subseteq k \cup P.$$

ii) $$(k \cap P) + P \subseteq (k + P) \cap (P + P) \subseteq k \cap P,$$

$$(k \cap P) \cdot P \subseteq (k \cdot P) \cap (P \cdot P) \subseteq k \cap P.$$

It will be shown similarly

$$P + (k \cap P) \subseteq k \cap P, \quad P \cdot (k \cap P) \subseteq k \cap P.$$

iii) Is true because

$$\frac{k \cup P}{k} = (P - k) \cup \{w\} = \frac{P}{k \cap P}$$

Proposition 6.—Let $k \neq \emptyset$ be a bi-ideal of A; let $h: A \rightarrow A/k$ be the natural homomorphism. h induces a one-to-one correspondence which preserves inclusion, which we also call h

$$h: p \mapsto h(p) = p/k$$
from the set of the bi-ideals of \(A \) that contain \(\mathbf{k} \) upon the set of the non-trivial bi-ideals of \(A/\mathbf{k} \). Moreover,

\[
(A/\mathbf{k})/(\mathbf{p}/\mathbf{k}) = A/\mathbf{p}.
\]

The proof in detail of the above statement does not offer difficulty. It can be made in these steps: i) If \(\mathbf{p} \) is a bi-ideal of \(A \) so that \(\mathbf{k} \subseteq \mathbf{p} \), then \(h(\mathbf{p}) = \mathbf{p}/\mathbf{k} \) is a non-trivial bi-ideal of \(h(A) = A/\mathbf{k} \). ii) If \(\mathbf{q} \) is a non-trivial bi-ideal of \(A/\mathbf{k} \), then \(h^{-1}(\mathbf{q}) = \mathbf{p} \) is a bi-ideal of \(A \) which contains \(\mathbf{k} \), so that \(h(\mathbf{p}) = \mathbf{q} \). Therefore \(h \) induces a mapping from the first set of the statement onto the second. iii) \(h \) induces a one-to-one map from the first set onto the second set, because \(h(\mathbf{m}) = h(\mathbf{n}) \) implies \(\mathbf{m} - \mathbf{k} = \mathbf{n} - \mathbf{k} \) and, therefore, \(\mathbf{m} = \mathbf{n} \). iv) That \(h \) preserves the inclusions is proved in the same manner as iii). v) Lastly,

\[
(A/\mathbf{k})/(\mathbf{p}/\mathbf{k}) = (A/\mathbf{k} - \mathbf{p}/\mathbf{k}) \cup \{w\} = (A - \mathbf{p}) \cup \{w\} = A/\mathbf{p}
\]

Definitions.—Given two bi-ideals \(\mathbf{p, q} \) of the semiring \(A \), we say that \(\mathbf{q} \) is *maximal* in \(\mathbf{p} \) if and only if \(\mathbf{q} \subseteq \mathbf{p} \) and there are not any bi-ideal of \(A \) strictly between \(\mathbf{q} \) and \(\mathbf{p} \). We will say that \(\mathbf{m} \) is a *maximal bi-ideal* of \(A \) if \(\mathbf{m} \) is a maximal bi-ideal in \(A \).

Proposition 7.—i) Given two bi-ideals \(\mathbf{p} \) and \(\mathbf{q} \neq \emptyset \) of \(A \); \(\mathbf{q} \) is maximal in \(\mathbf{p} \) if and only if \(\mathbf{p}/\mathbf{q} \) forms a \(\mathbf{w} \)-minimal bi-ideal of \(A/\mathbf{q} \). In such a case \(\mathbf{p}/\mathbf{q} \) constitutes a symmetric or simple semiring.

ii) Let \(\mathbf{m} \neq \emptyset \) be-ideals \(A; \mathbf{m} \) is maximal of \(A \) if and only if \(A/\mathbf{m} \neq W \) contains no proper bi-ideal; that is, if and only if \(A/\mathbf{m} \) is primitive symmetric or simple semiring \(\neq W \).

iii) \(\emptyset \) is maximal bi-ideal in \(\mathbf{p} \) if and only if \(\mathbf{k}(A) \) exists and \(\mathbf{p} = \mathbf{k}(A) \). In such a case \(\mathbf{p} \) is simple semiring.

Proof.—i) Is a result of proposition 6 and 2. ii) Follows from propositions 6 and 4. iii) Is consequence of definitions and proposition 3.

§ 4. **Principal factors of a semiring**

In this paragraph we extend to semirings part of the theory of J. A. Green about semigroups. See [2] vol. I, chapter 2, section 2.6 and [5].
Let A be a semiring and $x \in A$; $J(x)$ will be the minimal (minimum) bi-ideal of A which contains the element x, that is, the intersection of all the bi-ideals of A that contain x. We establish an equivalent relation on A, which we call J (Green’s relation) in this manner:

$$x, y \in A, x J y \iff J(x) = J(y)$$

Let

$$J_a = \{ u \in A \mid u J_a \}$$

for $a \in A$. Evidently $J_a \subseteq J(a)$, for all $a \in A$. Let $I(a)$ be the set

$$I(a) = J(a) - J_a.$$

Proposition 8.

i) $I(a) = \{ t \in A \mid J(t) \subseteq J(a), \text{ strictly} \}$

and ii) $I(a)$ is a bi-ideal of A, maximal in $J(a)$.

Proof.—i) is evident.

ii) First we prove that $I(a)$ is a bi-ideal of A. If $I(a) = \emptyset$, then it is bi-ideal by convention. Assume $I(a) \neq \emptyset$. We show

(9)

$$I(a) + A \subseteq I(a).$$

Let

$$p \in I(a), x \in A;$$

as $p \in J(p)$, it follows

$$p + x \in J(p);$$

then

$$J(p + x) \subseteq J(p) \subseteq J(a),$$
thanks to part i) of this proposition 8. For the same reason,
\(p + x \in I(a) \), and (9) is proved. Similarly
\[
A + I(a) \subset I(a)
\]

Now we state
\[
(10) \quad I(a) \cdot A \subset I(a).
\]

Let
\[
p \in I(a), x \in A;
\]
then \(p \cdot x \in J(p) \); consequently
\[
J(p \cdot x) \subset J(p) \subset J(a).
\]

Thanks to part i), \(p \cdot x \in I(a) \). Similarly
\[
A \cdot I(a) \subset I(a),
\]
and \(I(a) \) is a bi-ideal of \(A \).

We now deduce that \(I(a) \) is maximal in \(J(a) \). We suppose that \(t \) is a bi-ideal of \(A \) such that
\[
I(a) \subset t \subset J(a)
\]
and let
\[
td t - I(a);
\]
then
\[
J(t) \subset t \subset J(a);
\]
but from
\[
t \in J(a) - I(a) = J_0
\]
we see that
\[
J(t) = t = J(a).
\]
Definitions.—Every Rees factor of the form $J(x)/I_c(x)$, being x an element of the semiring A, will be called a principal factor of A. All principal factors of A are symmetric or simple semirings, according to propositions 8 and 7. A strictly decreasing chain of bi-ideals of A:

$$S_1 = A \supset S_2 \supset \ldots \supset S_p \supset S_{p+1} = \emptyset,$$

which begins with A, ends with \emptyset and is such that S_{i+1} is maximal in S_i for

$$i = 1, 2, \ldots, p,$$

will be named a principal series of A. Thus $S_p = k(A)$. The factors of the principal series (11), defined by

$$S_i/S_{i+1}, \quad i = 1, \ldots, p,$$

are symmetric or simple semirings by proposition 7. It will be said that two principal series of A are isomorphic if and only if there is a one-to-one correspondence from the set of factors of one onto the set of factors of the other, so that the corresponding factors are isomorphic.

Theorem 1.—Let A be a semiring which admits a principal series. The factors of any principal series of A are isomorphic—taken in a certain order—to the principal factors of A. In particular, any two principal series of A are isomorphic. The principal factors of A are symmetric or simple semirings.

Proof.—We consider a factor

$$S_i/S_{i+1}, \quad i = 1, \ldots, p$$

of the principal series (11) of A. Let

$$m \in S_i - S_{i+1}; \quad J(m) \cup S_{i+1}$$

is a bi-ideal of A (proposition 1 ii)), which (because it contains m and S_{i+1}) contains strictly S_{i+1} and is contained in S_i; therefore

$$J(m) \cup S_{i+1} = S_i.$$
We shall see that
\[I(m) \subseteq S_{i+1}. \]
(13)

Let
\[p \notin I(m) \subseteq S_i; \quad \text{if} \quad p \notin S_i \subseteq S_{i+1}, \]
we shall arrive at
\[J(p) \cup S_{i+1} = S_i, \]
reasoning as before; from which
\[m \notin J(m), \quad p \notin I(m) \subseteq J(m); \]
\[\text{it follows } J(p) = J(m); \quad \text{which would imply} \]
\[p \notin J(m) = J_m = I(m), \]
\[\text{a contradiction; thus (13) is true,} \]
(14)
\[I(m) = J(m) \cap S_{i+1}, \quad m \notin S_i \subseteq S_{i+1}, \]
is also true. In effect,
\[I(m) \subseteq J(m) \cap S_{i+1} \]

because \(I(m) \subseteq J(m) \) and by (13). Let
\[c \notin J(m) \cap S_{i+1}; \]
then
\[J(c) \subseteq J(m), \quad J(c) \subseteq S_{i+1} \]
and so \(m \notin J(c); \) from which \(J(c) \subseteq J(m) \) strictly; which, according to proposition 8 i), implies \(c \notin I(m). \) So we have proved (14).
We now use proposition 5, substituting \(\mathbf{k} \) and \(\mathcal{P} \) by \(S_{i+1} \) and \(J(m) \), respectively. From formulas (12) and (14) we see that

\[
S_i / S_{i+1} \cong J(m) / I(m), \quad \forall m \in S_i - S_{i+1}.
\]

The principal factor \(J(m)/I(m) \) is independent of the chosen element \(m \in S_i - S_{i+1} \), as the above proof has shown. Thus the correspondence

\[
\alpha : S_i / S_{i+1} \longrightarrow J(m) / I(m), \quad m \in S_i - S_{i+1}
\]

is a map. \(\alpha \) is one-to-one because, given an arbitrary \(x \in A \), there exists a unique \(i = 1, 2, \ldots, \rho \) so that

\[
x \in S_i - S_{i+1}
\]

\(\alpha \) is a map onto since \(\{ J_x \}_{x \in A} \) is a partition of \(A \) and

\[
J_x = J(x) - I(x) = S_i - S_{i+1},
\]

for

\[
x \in S_i - S_{i+1}.
\]

So the first part of theorem 1 is proved; the other parts are now evident.

§ 5. The Jordan-Hölder Theorem

Proposition 9 (Zassenhaus Lemma).—Let \(R, S \) be two subsemirings of the semiring \(A \); let \(r, s \) be bi-ideals of \(R \) and \(S \), respectively. We call

\[
T = r \cup (R \cap S), \quad t = r \cup (R \cap s),
\]

\[
U = s \cup (R \cap S), \quad u = s \cup (r \cap S).
\]
Then i) T and U are subsemirings of A; ii) t and u are bi-ideals of T and U, respectively, and iii)

$$T/t \simeq U/u$$

Proof.—Making in proposition 5 i)

$$A = R, \ k = r, \ P = R \cap S,$$

we find that

$$r \cup (R \cap S) = T$$

is a subsemiring of R and therefore of A. We will now show that t is a bi-ideal of T. From the fact that r is a bi-ideal of R and $T \subseteq R$ there follows

\begin{equation}
(15)
\begin{aligned}
r + T & \subseteq r, \ T + r \subseteq r.
\end{aligned}
\end{equation}

Taking in proposition 5 ii)

$$A = S, \ k = s, \ P = R \cap S$$

we obtain that

$$s \cap (R \cap S) = R \cap s$$

is a bi-ideal of $R \cap S$. According to this it verifies:

\begin{align}
(16) \quad & (R \cap s) + (R \cap S) \subseteq R \cap s, \quad (R \cap S) + (R \cap s) \subseteq R \cap s, \\
(17) \quad & (R \cap s) \cdot (R \cap S) \subseteq R \cap s, \quad (R \cap S) \cdot (R \cap s) \subseteq R \cap s.
\end{align}

Just as r is a bi-ideal of $R \supseteq R \cap S$ and from (16) we deduce

\begin{align}
(18) \quad & (R \cap s) + T = (R \cap s) + (r \cup (R \cap S)) \subseteq \\
& \subseteq [(R \cap s) + r] \cup [(R \cap s) + (R \cap S)] \subseteq \\
& \subseteq r \cup (R \cap s) = t.
\end{align}
From (15) and (18) it follows that
\[t + T = [r \cup (R \cap s)] + T \subseteq (r + T) \cup [(R \cap s) + T] \subseteq r \cup t = t \]

Because \(r \) is a bi-ideal of \(R \) and according to (17), we have
\[t \cdot T = [r \cup (R \cap s)] \cdot [r \cup (R \cap s)] \subseteq \]
\[\subseteq (r \cdot r) \cup [r \cdot (R \cap S)] \cup [(R \cap s) \cdot r] \cup [(R \cap s) \cdot (R \cap S)] \subseteq \]
\[\subseteq r \cup (R \cap s) = t \]

Analogically, we can prove
\[T + t \subseteq t, \quad T \cdot t \subseteq t, \]

Lastly we shall show
\[T / t \cong U / u. \]

Taking in proposition 5,
\[A = T, \quad k = t \quad \text{and} \quad P = (R \cap S), \]

we can state
\[[t \cup (R \cap S)] / t \cong (R \cap S) / [t \cap (R \cap S)]. \]

But
\[t \cap (R \cap S) = [r \cup (R \cap s)] \cap (R \cap S) \subseteq (r \cap S) \cup (R \cap s). \]

Thus, we arrive at
\[T / t \cong (R \cap S) / [(r \cap S) \cup (R \cap s)]. \]

We can obtain \(U \) and \(u \) from \(T \) and \(t \) by interchanging \(R, r \) with \(S, s \); the reasoning that led to the conclusion \(t \) is a bi-ideal of \(T \), now leads to the affirmation \(u \) is a bi-ideal of \(U \) and to the isomorphism
\[U / u \cong (S \cap R) / [(s \cap R) \cup (S \cap r)]. \]
Consequently,

\[T / t \cong U / u. \]

Definitions.—A *series* of a semiring \(A \) is a decreasing chain of sub-semirings of \(A \):

\[A_1 = A \supset A_2 \supset \ldots \supset A_{r-1} \supset A_r = \emptyset \]

which begins with \(A_1 = A \), ends with \(A_r = \emptyset \), so that \(A_{i+1} \) is a b-ideal of \(A_i \), for \(i = 1, 2, \ldots, r - 1 \). A *refinement* of series (19) is another series of \(A \) which contains, at least, all the terms that are in (19). A *proper refinement* of (19) is a refinement which contains, at least, one term more than the original series (19), different from all those of (19). Two series of \(A \) are called *isomorphic* if there is a one-to-one correspondence from the set of factors of one onto the set of factors of the other, so that the corresponding factors are isomorphic.

Theorem 2 (The Schreier refinement theorem).—*Any two series of a semiring have isomorphic refinements.*

Proof.—Let (19) and

\[B_1 = A \supset B_2 \supset \ldots \supset B_{r-1} \supset B_r = \emptyset \]

be two series of \(A \). We form the following refinements of (19) and (20):

\[A_{11} = A \supset A_{12} \supset \ldots \supset A_{1r} = A_{11} \supset \ldots \supset A_{1r} = \emptyset \]

\[B_{11} = A \supset B_{21} \supset \ldots \supset B_{r1} = B_{11} \supset \ldots \supset B_{r1} = \emptyset \]

where

\[A_{i,j} = A_{i+1} \cup (A_i \cap B_j) \]

and

\[B_{i,j} = B_{j+1} \cup (A_i \cap B_j). \]

Proposition 9 asserts that \(A_{i,j}, B_{i,j} \) are subsemirings of \(A \), that.

\[A_{i,j+1} \quad \text{and} \quad B_{i+1,j} \]
are bi-ideals of $A_{i,j}$ and $B_{i,j}$ respectively, and that

$$A_{i,j} / A_{i,j+1} \cong B_{i,j} / B_{i+1,j}.$$

Definition.—Every series of the semiring A strictly decreasing which admits no proper refinement will be called a *composition series* of A. If (19) is a composition series of A then $A_{i,1}$ is a maximal bi-ideal of A_i, for $i = 1, 2, \ldots, r - 1$. In view of proposition 7 and theorem 2, we can state:

Corollary of theorem 2 (Jordan-Hölder theorem).—Any two composition series of a semiring are isomorphic (if they exist). The factors of any composition series are primitive symmetric or simple semirings.

The Jordan-Hölder theorem for semirings is not a particular case of the theorem of the same name for universal algebras (see, for example [1] or [3]) because the congruences on a semiring do not commute in general. Neither is it a particular case of the J-H theorem in categories such as is established in [4], as can be easily verified.

In a future work we shall generalize certain results of this paper.

Bibliography

Universidad Autónoma de Madrid
Departamento de Matemáticas
Canto Blanco, Madrid