CASINORMABILIDAD EN LOS ESPACIOS ESCalonADOS DE KÖTHE-LORENTZ CON VALORES VECTORIALES

Carmen Alegre Gil

ABSTRACT. In this paper we study the echelon spaces of Köthe-Lorentz of order p, taking values in a Banach space. we shall equip them with topologies which to arise in a very natural way and we shall characterize their normability.

Como es usual ω denota el espacio de todas las sucesiones con valores en el cuerpo K de los números reales o complejos. ω es un Fréchet con la topología de la convergencia coordenada a coordenada y su dual es el espacio ϕ de las sucesiones con sólo un número finito de términos no nulos.

Designamos por $d(u, p)$ al espacio de Lorentz de orden p con $p \geq 1$:

$$d(u, p) := \left\{ x = (x_n) \in \omega : \sup_{\sigma \in \Sigma} \sum_i |x_{\sigma(i)}|^p w_i < +\infty \right\}$$

siendo Σ el conjunto de las permutaciones de los naturales y (w_i) una sucesión decreciente y positiva que está en c_0 y no está en ℓ_1.

Sea $(E, \| \cdot \|)$ un espacio de Banach con dual E'. Por $\omega(E)$ notaremos el conjunto de todas las sucesiones con valores en E:

$$\omega(E) := \left\{ x = (x_n) : x_n \in E \quad \forall n \in \mathbb{N} \right\}$$

Definiendo coordenada a coordenada la suma y el producto por escalares, $\omega(E)$ adquiere estructura de espacio vectorial sobre K y contiene como subespacio vectorial al espacio $\phi(E)$ de todas las sucesiones en E con sólo un número finito de términos no nulos. Llamaremos espacio de sucesiones con valores en E, a todo subespacio de $\omega(E)$ que contenga a $\phi(E)$.
Sobre $\omega(E)$ consideramos la topología dada por la familia de seminormas p_n, con $n \in \mathbb{N}$

$$x = (x_n) \in \omega(E) \mapsto p_n(x) = \|x_n\|$$

Vamos a designar por $l(E)$ al siguiente espacio de sucesiones con valores en E:

$$l(E) := \{x = (x_n) \in \omega(E) : (\|x_n\|) \in d(w, p)\}$$

El espacio $l(E)$ es normado y la norma es la siguiente:

$$\|x\|^p = \sup_{\pi \in \Sigma} \sum_i \|x_{\pi(i)}\|^p w_i$$

(por comodidad la notamos igual que a la norma de E).

Se define el α-dual de $l(E)$ como:

$$l(E)^\alpha := \{u = (u_n) \in \omega(E') : \sum_n \|x_n, u_n\| < +\infty \forall x = (x_n) \in l(E)\}$$

y evidentemente $(l(E), l(E)^\alpha)$ es un par dual.

Sea (a_{nk}) una matriz infinita de números reales que verifica: $0 < a_{nk} \leq a_{nk+1}$ para todo $n, k \in \mathbb{N}$. Llamaremos λ_k al espacio siguiente:

$$\lambda_k := \{x = (x_n) \in \omega(E) : (a_{nk} x_n) \in l(E)\}.$$

Llamamos $\| \cdot \|_k$ a la norma de dicho espacio:

$$x \in \lambda_k \mapsto \|x\|_k = \|(a_{nk} x_n)\|.$$

Damos a continuación la definición de los espacios escalonados de Köthe-Lorentz con valores en E y posteriormente estudiaremos la casinormabilidad en dichos espacios, presentando una caracterización de esta propiedad en términos de la matriz (a_{nk}).

Definición 1. Llamaremos espacio escalonado de Köthe-Lorentz con valores en E, al siguiente espacio de sucesiones vectoriales en E:

$$\lambda := \{x = (x_n) \in \omega(E) : \|x\|_k < +\infty \forall k \in \mathbb{N}\}.$$

A este espacio le damos la topología definida por la familia de normas $\| \cdot \|_k$, con $k \in \mathbb{N}$. Denotaremos por λ^α el α-dual de λ.

Lema 1. Sea $V = \{v = (v_i) \geq 0 : \sup v_i a_{in} < \infty \forall n \in \mathbb{N}\}$, entonces, un sistema fundamental de acotados de λ lo forman los conjuntos vM, con $v \in V$, siendo M la bola unidad cerrada del espacio $l(E)$.
Demostración. Vamos a probar que $A = vM$ es acotado en λ:

\[
\sup_{y \in A} \|y\|_n^p = \sup_{x \in M} \|vx\|_n^p = \sup_{x \in M} \sup_{\tau \in \Omega} \sum_i \|x_{\tau(i)} v_{\tau(i)} a_{\tau(i),n}\|_1^p w_i
\]
\[
\leq K_n^p \sup_{x \in M} \sup_{\tau \in \Omega} \sum_i \|x_{\tau(i)}\|_1^p w_i < K_n^p
\]

Observación: como $v \in V$ se tiene que para cada $n \in \mathbb{N}$ existe K_n tal que

\[
\sup v_i a_i < K_n
\]

Supongamos ahora que B es un acotado de λ; se tendrá entonces que B estará acotado en cada escalón, es decir, para todo $n \in \mathbb{N}$ existe $K_n > 0$ tal que:

\[
B \subset \{x \in \lambda : \|x\|_n < K_n\}
\]

Sea $v_i := \inf_n 2^{n+1} K_n a_{in}^{-1}$, se tiene que $v = (v_i) \in V$ ya que

\[
\sup v_i a_i < 2^{n+1} K_n.
\]

Nota 1: Si $x = (x_n) \in B$ se tiene:

\[
\|x_i\|_n^p = \left(\sum_j w_j a_{jn} \|x_j\|_1 \frac{1}{w_i^{1/p} a_{in}} \right)^p
\]
\[
\leq \left(\sum_j a_{jn} \|x_j\|_1 \frac{1}{w_i^{1/p} a_{in}} \right)^p
\]
\[
\leq \left(\sum_j \|x_j\|_1 \frac{1}{w_i^{1/p} a_{in}} \right)^p
\]
\[
\leq \|x\|_n^p \left(\frac{1}{w_i^{1/p} a_{in}} \right)^p
\]
\[
\leq \left(\frac{2^{n+1} K_n}{w_i^{1/p} a_{in}} \right)^p
\]

Tomando ínfimos para $n \in N$ obtenemos:

\[
\|x_i\|_n^p \leq v_i^p w_i^{-1}.
\]
Luego siempre que \(x_i \) sea no nulo se tendrá que \(v_i \) será también no nulo.

Vamos a probar que \(B \subset \psi M \), para ello tomemos en primer lugar un elemento que esté en \(\phi(E) \cap B \). Sea \(y = (y_n) \in \phi(E) \cap B \) y sea \(I_0 = \{ i \in \mathbb{N} : y_i \neq 0 \} \), y por la nota 1 se tiene que \(v_i \neq 0 \) para todo \(i \in I_0 \) luego:

\[
\frac{1}{v_i} \leq \sup_n \frac{a_{im}}{2^{m+1} K_n} \quad \text{para todo} \; i \in I_0.
\]

Por definición de supremo, dado \(i \in I_0 \) existe \(m_i \in \mathbb{N} \) tal que

\[
\left(\frac{1}{v_i} \right)^p \leq \left(\frac{a_{im_i}}{2^{m_i+1} K_{m_i}} \right)^p + \frac{1}{2 |I_0| \|y_i\|^p w_1}.
\]

Sea \(N_0 := \max \{ m_i : i \in I_0 \} \), entonces para \(1 \leq n \leq N_0 \) definimos \(I_n \):

\[
I_n := \{ i \in I_0 : n = m_i \}.
\]

Vamos a considerar la sucesión \(z = (z_i) \) siendo:

\[
z = \begin{cases}
y_i/v_i, & i \in I_0 \\
0, & i \notin I_0.
\end{cases}
\]

Veamos que \(z \in M \):

\[
\sup_{\pi \in \Sigma} \sum_i \|x_{\pi(i)}\|^p w_i = \sup_{\pi \in \Sigma} \sum_{i \in \pi^{-1}(I_0)} \|x_{\pi(i)}\|^p w_i
\]

\[
= \sup_{\pi \in \Sigma} \sum_{i \in \pi^{-1}(I_0)} \left\{ \|y_{\pi(i)}\| v_{\pi(i)} \right\}^p w_i
\]

\[
\leq \sup_{\pi \in \Sigma} \sum_{i \in \pi^{-1}(I_0)} \left[\frac{1}{2 |I_0| \|y_{\pi(i)}\|^p w_1} + \left(\frac{a_{\pi(i)m_{\pi(i)}}}{2^{m_{\pi(i)}+1} K_{m_{\pi(i)}}} \right)^p \|y_{\pi(i)}\|^p w_1 \right]
\]

\[
\leq \frac{1}{2} + \sup_{\pi \in \Sigma} \sum_{n=1}^{n_0} \left(\frac{1}{2^{n+1} K_n} \right)^p \sum_{i \in \pi^{-1}(I_n)} \|y_{\pi(i)}\|^p a_{\pi(i),n} w_i
\]
CASINORMABILIDAD EN LOS ESPACIOS ESCALONADOS

\[
\leq 1/2 + \sum_{n=1}^{n_n} \left(\frac{1}{2^{n+1} K_n} \right)^p \|y\|_n^p \\
< 1/2 + (1/2) \sum_{n=1}^{n_n} \frac{1}{2^n} \\
< 1/2 + 1/2 = 1.
\]

Veamos ahora el caso general: supongamos \(y \in B \) entonces se tiene que \(y = \lim y^n \) [2], siendo \(y^n \) la sección \(n \)-ésima de la sucesión. Cada sección está en \(B \cap \phi(E) \) luego aplicando el caso anterior obtenemos que para todo \(n \in \mathbb{N} \) existe una sucesión \(z^n = (z^n_i) \) en \(M \) tal que \(y^n = uz^n \) por lo tanto \(y = \lim u z^n \). Como la convergencia en \(\lambda \) implica la convergencia coordenada a coordenada se tiene que \(y_i = \lim z^n_i v_i \).

Sea \(z_i = \lim z^n_i ; \) como \(y \in B \) se tendrá por la nota 1 que:

\[
z_i = \begin{cases}
 y_i / w_i, & \text{si } v_i \neq 0 \\
 0, & \text{si } v_i = 0.
\end{cases}
\]

Vamos a probar que \(z \in M ; \) entonces, como \(y = vz \), se tendrá que \(y \in v M \).

Para todo \(N \in \mathbb{N} \) definimos:

\[
h^n_i = \begin{cases}
 z^n_i, & \text{si } v_i \neq 0 \\
 0, & \text{si } v_i = 0
\end{cases}
\]
evidentemente \((h^n_i) \in M \) para todo \(n \in \mathbb{N} \), además \(z_i = \lim h^n_i \), luego para todo \(r \in \mathbb{N} \) y toda \(\pi \in \Sigma \) se tiene que:

\[
\sum_{i=1}^{r} ||z_{\pi(i)}||^p \ w_i = \lim_{n} \sum_{i=1}^{r} ||h^n_{\pi(i)}||^p \ w_i \leq \liminf_{n} \sum_{i=1}^{r} ||h^n_{\pi(i)}||^p \ w_i.
\]

Tomando supremos para \(r \in \mathbb{N} \) y \(\pi \in \Sigma \) se obtiene que \(z \in M \).

Definición 2. Decimos que la matriz \((c_{nk})\) es regularmente decreciente si dado \(n \in \mathbb{N} \) existe \(m > n \) tal que para todo \(l_0 \subset \mathbb{N} \) cumpliendo que:

\[
\inf_{i \in l_0} \frac{a_{im}}{a_{in}} > 0
\]

entonces

\[
\inf_{i \in l_0} \frac{a_{im}}{a_{ik}} > 0 \quad \text{para } k = m + 1, m + 2, \ldots
\]

Esta definición es equivalente a la siguiente ([1] prop. 3.2): para todo \(n \in \mathbb{N} \) existe \(m > n \) tal que para todo \(\epsilon > 0 \) existe \(v \in V \) cumpliendo que

\[
\frac{1}{a_{im}} \leq \frac{\epsilon}{a_{in}}
\]
siempre que
\[v_i \leq \frac{1}{a_{jm}}. \]

Teorema 1. \(\lambda \) es casinormable si y sólo si la matriz \((a_{nk})\) es regularmente decreciente.

Demostración. Supongamos que \(\lambda \) es casinormable; entonces, dado
\[A = W^o = \{ y \in \lambda : \|y\|_m \leq 1/n \}^o \]
equiconjunto en \(\lambda^\times \), existen \(m \geq n, \delta > 0 \) tal que si
\[U = \{ y \in \lambda : \|y\|_m \leq \delta \}, \]
\(\lambda^\times U \) induce en \(A \) la misma topología que \(\beta(\lambda^o, \lambda) \).

Por el lema anterior dado \(\epsilon > 0 \) existe \(v \in V \) tal que si \(B = vM \) entonces
\[A \cap B^o \subset \{ y \in \lambda^\times U : p_{v^o}(y) \leq \epsilon \delta \} \]
siendo \(p_{v^o} \) el calibrador de \(U^o \).

Sea \(j \in N \) tal que
\[v_j \leq \frac{1}{a_{jm}}, \]
vamos a probar que
\[\frac{1}{a_{jm}} \leq \frac{1}{a_{jn}}. \]

Sea \(t \in E^\prime \) tal que \(||t|| = 1 \) y sea
\[z = (0, 0, \ldots, t w_{1/p} a_{jn}, 0, 0, \ldots) ; \]
veamos que \(z \in A \cap B^o: z \in A = W^o \) si \(|(z, x)| \leq 1 \) para todo \(x \in W \). Sea \(x = (x_n) \in W: \)
\[|(z, x)|^p = \left(\sum_i (z_i, x_i) \right)^p \]
\[= \left(\sum_i (w_{1/p} a_{jn} t, x_i) \right)^p \]
\[\leq \sum_i \|w_{1/p} a_{jn} t\|^p \|x_i\|^p \]
\[= \|t\|^p \|a_{jn} x_i\|^p w_i \]
\[\leq \sum_i \|x_{\tau(i)} a_{\tau(i), n}\|^p w_i \]
\[\leq \sup_{\tau \in \Sigma} \sum \|x\| a_{\tau(i), n\|^p w_i} \]
\[\leq \frac{1}{n} \leq 1 \]
(siendo τ una permutación de \mathbb{N} tal que $\tau(1) = j$).

Veamos ahora que $z \in B^\circ$: sea $x \in B$, entonces $z = ur$ con $r \in M$.

$$
|\langle x, z \rangle|^p = \left(\sum_i |(x_i, z_i)| \right)^p
= |(v_j r_j, a_{jn} w_1 t)|^p
= v_j a_{jn} w_1^{1/p} |(r_j, t)|
\leq \left(\frac{a_{jn}}{a_{jm}} \right)^p w_1 |r_j|^p
\leq \sum_i \|r_{\tau(i)}\|^p w_i
\leq \sup_{x \in E} \sum_i \|r_{\tau(i)}\|^p w_i
\leq 1.
$$

(siendo τ una permutación de \mathbb{N} tal que $\tau(1) = j$).

Hemos probado que $z \in B^\circ \cap A$, luego $p_{U^\circ}(z) < \epsilon \delta$, es decir,

$$
p_{U^\circ}(z) = \inf \{ \alpha > 0 : z \in \alpha U^\circ \}
= \inf \{ \alpha > 0 : \sum_i (x_i, z_i) \leq \alpha \quad \forall x \in U \}
= \inf \{ \alpha > 0 : \langle a_{jn} w_1 t, x_j \rangle \leq \alpha \quad \forall x \in U \}
= \sup \{ \{a_{jn} w_1 t, x_j\} \subset E \}
< \epsilon \delta .
$$

Obsérvese que esta desigualdad es independiente de t, luego es cierta para cualquier elemento de E' de norma 1.

Vamos a tomar

$$
x = (0, 0, \ldots, (b/a_{jm} w_1) y, 0, 0, \ldots),
$$

siendo y un elemento de E cuya norma vale uno. Si aplicamos el teorema de Hahn-Banach encontramos un elemento u en E de norma uno verificando que $\langle u, y \rangle = \|y\|$. Se comprueba con facilidad que x está en U entonces, teniendo en cuenta la observación anterior, se tiene:

$$
\epsilon \delta > \left\langle a_{jn} w_1 u, \frac{\delta}{a_{jm} w_1} y \right\rangle
= \delta \frac{a_{jn} w_1}{a_{jm} w_1} \langle u, y \rangle
= \delta \frac{a_{jn}}{a_{jm}}
$$
por tanto $a_{jn}/a_{jm} < \epsilon$.

Veamos ahora el recíproco: supongamos que A es equicontinuo en λ^X, es decir, existe un $k \in \mathbb{N}$ tal que $A \subset U^o$ siendo U el conjunto:

$$ U = \{ x \in \lambda : \|x\|_k \leq 1/k \}. $$

Aplicando la hipótesis, existe $m > k$ tal que para todo $\epsilon > 0$ existe $v \in V$ cumpliendo que si $v_i \leq 1/a_{im}$ entonces

$$ \frac{1}{a_{im}} \leq \frac{\epsilon}{4k} \frac{1}{a_{ik}}. $$

Sea $W = \{ x \in A : \|x\|_m \leq 1/m \}, W \subset U$, luego $A \subset U^o \subset W^o$. Vamos a probar que $\lambda^X_{W^o}$ induce en A la misma topología que $\beta(\lambda^X, \lambda)$.

Consideremos z un elemento de A y N un entorno de z en $\lambda^X_{W^o}$ restringida a A:

$$ N = \{ y \in A : pW^*(y - z) \leq \epsilon \}. $$

Dado $B = vM$ acotado de λ, consideramos N^\wedge el siguiente conjunto:

$$ N^\wedge := \{ y \in \lambda^X : \sup_{x \in B} \sum_i |(x_i, y_i - z_i)| < \epsilon/(2k) \}. $$

N^\wedge es $\beta(\lambda^X, \lambda)$ entorno de z, vamos a probar que $N^\wedge \cap A \subset N$.

Sea $y \in N^\wedge \cap A$ veamos que $(1/\epsilon)(y - z) \in W^o$; sea $x \in W$, entonces:

$$ |(x, y - z)| = \sum_i |(x_i, y_i - z_i)| $$

$$ \leq \sum_{i \in I_1} |(x_i, y_i - z_i)| + \sum_{i \in I_2} |(x_i, y_i - z_i)| $$

siendo I_1 e I_2 los conjuntos:

$$ I_1 := \{ i \in \mathbb{N} : v_i \geq 1/a_{im} \} $$

$$ I_2 := \{ i \in \mathbb{N} : v_i < 1/a_{im} \} $$

evidentemente si $i \in I_1$ entonces $v_i > 0$, ya que que $1/a_{im} > 0$.

$$ \sum_{i \in I_1} |(x_i, y_i - z_i)| = \sum_{i \in I_1} \frac{1}{v_i} |(x_i, y_i - z_i)| v_i $$

$$ \leq \sum_{i \in I_1} |(x_i, y_i - z_i)| a_{im} v_i $$

$$ \leq \sum_{i \in I_1} |(a_{im} v_i x_i, y_i - z_i)| $$

$$ < \frac{\epsilon}{2k} $$

(1)
(la última desigualdad se ha establecido teniendo en cuenta que la sucesión \((a_{im}v_i)\) está en \(vM = B\))

\[
\sum_{i \in I_2} |(x_i, y_i - z_i)| = \sum_{i \in I_2} \frac{1}{a_{im}} |(x_i, y_i - z_i)| a_{im} \\
\leq \sum_{i \in I_2} |(x_i, y_i - z_i)| \frac{1}{a_{ik}} a_{im} \frac{\epsilon}{4k} \\
\leq \frac{\epsilon}{4k} \sum_{i \in I_2} \frac{x_i}{a_{ik}} a_{im} + \frac{\epsilon}{4k} \sum_{i \in I_2} \frac{x_i}{a_{ik}} a_{im} z_i \\
= \frac{\epsilon}{4k} \sum_{i \in \mathbb{N}} \frac{x_i}{a_{ik}} a_{im} (y_i) + \frac{\epsilon}{4k} \sum_{i \in \mathbb{N}} \frac{x_i}{a_{ik}} a_{im} z_i.
\]

La sucesión \(((a_{im}/a_{ik})x_i) \in (\bar{U})^o\); siendo \(\bar{U} = \{x \in \lambda_k : \|x\|_k \leq 1/k\}\). Vamos a probar que \(U^o = (\bar{U})^o\).

Sea \(y \in U^o\), si \(x \in \bar{U}\) se tiene que \(x = \lim x^n\) \([2]\) siendo \(x^n\) la sección \(n\)-ésima de \(x\). Así, \((x^n, y) \leq 1\) ya que \(x^n \in U\) para todo \(n \in \mathbb{N}\), luego \(y \in (\bar{U})^o\). La otra inclusión es evidente.

Así pues, como \(y, x \in A \subset (\bar{U})^o\) y la sucesión \(((a_{im}/a_{ik})x_i) \in \bar{U}\) obtenemos que:

\[
\sum_{i \in I_2} |(x_i, y_i - z_i)| < \frac{\epsilon}{4k} + \frac{\epsilon}{4k} < \frac{\epsilon}{2}
\]

Aplicando las desigualdades (1) y (2) se tiene que:

\[
|(x, y - z)| + \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon,
\]

luego \(y - z \in \epsilon W\).

Bibliografía

Received 30/JUN/87

Carmen Alegre Gil
Dpto. de Matemática Aplicada. U. D. Informática
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
ESPAÑA