Presentación | Participantes | Bibliografía (DML-E) | Bibliografía adicional | Enlaces de interés | Otros proyectos DML | Ayuda  
INICIO | 18 de abril de 2024
  

High order regularity for subelliptic operators on Lie groups of polynomial growth.

Título inglés High order regularity for subelliptic operators on Lie groups of polynomial growth.
Título español Regularidad de orden superior para operadores subelípticos en grupos de Lie de crecimiento polinómico.
Autor/es Dungey, Nick
Organización Sch. Math. Univ. New South Wales, Sydney, Australia
Revista 0213-2230
Publicación 2005, 21 (3): 929-996, 36 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés Let G be a Lie group of polynomial volume growth, with Lie algebra g. Consider a second-order, right-invariant, subelliptic differential operator H on G, and the associated semigroup St = e-tH. We identify an ideal n' of g such that H satisfies global regularity estimates for spatial derivatives of all orders, when the derivatives are taken in the direction of n'. The regularity is expressed as L2 estimates for derivatives of the semigroup, and as Gaussian bounds for derivatives of the heat kernel. We obtain the boundedness in Lp, 1 < p < ∞, of some associated Riesz transform operators. Finally, we show that n' is the largest ideal of g for which the regularity results hold.
Various algebraic characterizations of n' are given. In particular, n' = s Å n where n is the nilradical of g and s is tha largest semisimple ideal of g.
Additional features of this article include an exposition of the structure theory for G in Section 2, and a concept of twisted multiplications on Lie groups which includes semidirect products in the Appendix.
Clasificación UNESCO 120220 ; 120106
Palabras clave español Grupos de Lie ; Operadores elípticos ; Regularidad ; Transformadas de Riesz
Código MathReviews MR2232672
Código Z-Math Zbl 1099.22007
Icono pdf Acceso al artículo completo
Equipo DML-E
Instituto de Ciencias Matemáticas (ICMAT - CSIC)
rmm()icmat.es