Presentación | Participantes | Bibliografía (DML-E) | Bibliografía adicional | Enlaces de interés | Otros proyectos DML | Ayuda  
INICIO | 21 de abril de 2024
  

Potential Theory for Schrödinger operators on finite networks.

Título inglés Potential Theory for Schrödinger operators on finite networks.
Título español Teoría del potencial para operadores de Schrödinger en redes finitas.
Autor/es Bendito, Enrique ; Carmona, Angeles ; Encinas, Andrés M.
Organización Dep. Mat. Apl. III Univ. Politèc. Catalunya, Barcelona, España
Revista 0213-2230
Publicación 2005, 21 (3): 771-818, 20 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés We aim here at analyzing the fundamental properties of positive semidefinite Schrödinger operators on networks. We show that such operators correspond to perturbations of the combinatorial Laplacian through 0-order terms that can be totally negative on a proper subset of the network. In addition, we prove that these discrete operators have analogous properties to the ones of elliptic second order operators on Riemannian manifolds, namely the monotonicity, the minimum principle, the variational treatment of Dirichlet problems and the condenser principle. Unlike the continuous case, a discrete Schrödinger operator can be interpreted as an integral operator and therefore a discrete Potential Theory with respect to its associated kernel can be built. We prove that the Schrödinger kernel satisfies enough principles to assure the existence of equilibrium measures for any proper subset. These measures are used to obtain systematic expressions of the Green and Poisson kernels associated with Dirichlet problems.
Clasificación UNESCO 120221
Palabras clave español Teoría del potencial ; Operadores elípticos ; Problemas de valor de frontera ; Problema de Dirichlet
Código MathReviews MR2231010
Código Z-Math Zbl 1102.31011
Icono pdf Acceso al artículo completo
Equipo DML-E
Instituto de Ciencias Matemáticas (ICMAT - CSIC)
rmm()icmat.es