Título inglés | Boundary value problems and duality between Lp Dirichlet and regularity problems for second order parabolic systems in non-cylindrical domains. |
---|---|
Título español | Problemas de valor de frontera y dualidad entre problemas de Dirichlet y problemas de regularidad en Lp para sistemas parabólicos de segundo orden en dominios no cilíndricos. |
Autor/es | Nyström, Kaj |
Organización | Dep. Mat. Umea Univ., Umea, Suecia |
Revista | 0010-0757 |
Publicación | 2006, 57 (1): 93-119, 15 Ref. |
Tipo de documento | articulo |
Idioma | Inglés |
Resumen inglés | In this paper we consider general second order, symmetric and strongly elliptic
parabolic systems with real valued and constant coefficients in the setting of a
class of time-varying, non-smooth infinite cylinders Ω = {(x0,x,t) Î R x Rn-1 x R: x0 > A(x,t)}. We prove solvability of Dirichlet, Neumann as well as regularity type problems with data in Lp and Lp1,1/2 (the parabolic Sobolev space having tangential (spatial) gradients and half a time derivative in Lp) for p Î (2 − ε, 2 + ε) assuming that A(x,·) is uniformly Lipschitz with respect to the time variable and that ||Dt1/2A||* ≤ ε0 < ∞ for ε0 small enough (||Dt1/2A||* is the parabolic BMO-norm of a half-derivative in time). We also prove a general structural theorem (duality theorem between Dirichlet and regularity problems) stating that if the Dirichlet problem is solvable in Lp with the relevant bound on the parabolic non-tangential maximal function then the regularity problem can be solved with data in Lq1,1/2(∂Ω) with q−1 + p−1 = 1. As a technical tool, which also is of independent interest, we prove certain square function estimates for solutions to the system. |
Clasificación UNESCO | 120220 |
Palabras clave español | Ecuaciones parabólicas ; Problemas de valor de frontera ; Problema de Dirichlet ; Espacios LP ; Regularidad ; Medidas de Carleson ; Integrales singulares |
Código MathReviews | MR2206182 |
Código Z-Math | Zbl 1092.35019 |
![]() |