Self-injective Von Neumann regular subrings and a theorem of Pere Menal.

Título inglés Self-injective Von Neumann regular subrings and a theorem of Pere Menal.
Título español Subanillos regulares de Von Neumann autoinyectivos y un teorema de Pere Menal.
Autor/es Faith, Carl
Organización Dep. Math. Hill Cent. Math. Sci. Rutgers State Univ., New Brunswick (New Jersey), Estados Unidos
Revista 0214-1493
Publicación 1992, 36 (2A): 541-567, 36 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés This paper owes its origins to Pere Menal and his work on Von Neumann Regular (= VNR) rings, especially his work listed in the bibliography on when the tensor product K = A ÄK B of two algebras over a field k are right self-injective (= SI) or VNR. Pere showed that then A and B both enjoy the same property, SI or VNR, and furthermore that either A and B are algebraic algebras over k (see [M]). This is connected with a lemma in the proof of the Hilbert Nullstellensatz, namely a finite ring extension K = k[a1, ..., an] is a field only if a1, ..., an are algebraic over k.
Código MathReviews MR1209823
Icono pdf Acceso al artículo completo