Counting fixed points of a finitely generated subgroup of Aff [C].

Título inglés Counting fixed points of a finitely generated subgroup of Aff [C].
Título español Contando puntos fijos de un subgrupo finitamente generado del grupo de las transformaciones afines actuando sobre la recta compleja.
Autor/es Loray, F. ; Van Der Put, M. ; Recher, F.
Organización (C.N.R.S.) I.R.M.A.R. Univ. Rennes 1, Rennes, Francia;Vakgroep Wiskunde Rijksuniv. Groningen, Groningen, Holanda;Lab. A.G.A.T. U.F.R. Mat. Univ. Lille 1, Villeneuve d'Ascq, Francia
Revista 0214-1493
Publicación 2004, 48 (1): 127-137, 4 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.
Clasificación UNESCO 120219
Palabras clave español Ecuación de Riccati ; Singularidades ; Ciclos límite ; Conjunto de puntos fijos ; Subgrupos ; Grupos de transformación
Código Z-Math Zbl pre02074333
Icono pdf Acceso al artículo completo