A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition.

Título inglés A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition.
Título español Prueba de la desigualdad (1,1) débil para integrales singulares con medidas no duplicantes basada en una descomposición de Calderón-Zygmund.
Autor/es Tolsa, Xavier
Organización Dep. Math. Chalmers Univ. Technol. Göteborg, Göteborg, Suecia;Dép. Math. Univ. Paris-Sud, Orsay, Francia
Revista 0214-1493
Publicación 2001, 45 (1): 163-174, 13 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés Given a doubling measure μ on Rd, it is a classical result of harmonic analysis that Calderón-Zygmund operators which are bounded in L2(μ) are also of weak type (1,1). Recently it has been shown that the same result holds if one substitutes the doubling condition on μ by a mild growth condition on μ. In this paper another proof of this result is given. The proof is very close in spirit to the classical argument for doubling measures and it is based on a new Calderón-Zygmund decomposition adapted to the non doubling situation.
Clasificación UNESCO 120213
Palabras clave español Medida de Radon ; Integrales singulares ; Función armónica
Código MathReviews MR1829582
Icono pdf Acceso al artículo completo