Título inglés |
G-structures of second order defined by linear operators satisfying algebraic relations. |

Título español |
Estructuras G de segundo orden definidas por operadores lineales que satisfacen relaciones algebraicas. |

Autor/es |
Demetropoulou-Psomopoulou, Demetra |

Organización |
Dep. Math. Fac. Sci. Univ. Thessaloniki, Tesalónica, Grecia |

Revista |
0214-1493 |

Publicación |
1997, 41 (2): 437-453, 17 Ref. |

Tipo de documento |
articulo |

Idioma |
Inglés |

Resumen inglés |
The present work is based on a type of structures on a differential manifold V, called G-structures of the second kind, defined by endomorphism J on the second order tangent bundle T^{2}(V ). Our objective is to give conditions for a differential manifold to admit a real almost product and a generalised almost tangent structure
of second order. The concepts of the second order frame bundle H^{2}(V ), its structural group L^{2} and its associated tangent bundle of second order T^{2}(V ) of a differentiable manifold V, are used from the point of view that is described in papers [5] and [6]. Also, the almost tangent structure of order two is mentioned and its generalisation, the second order almost transverse structure, is defined. |

Clasificación UNESCO |
121015 |

Palabras clave español |
Variedades diferenciables ; Tangentes ; Fibrados |

Código MathReviews |
MR1485494 |

**Acceso al artículo completo** |