On the connection between the topological genus of certain polyhedra and the algebraic genus of their Hilton-Hopt quadratic forms.

Título inglés On the connection between the topological genus of certain polyhedra and the algebraic genus of their Hilton-Hopt quadratic forms.
Título español Sobre la conexión entre el género topológico de ciertos poliedros y el género algebraico de sus formas cuadráticas de Hilton-Hopt.
Autor/es Bokor, Imre
Organización Sch. Math. Statist. Comput. Sci. Univ. New England, Armidale, Australia
Revista 0214-1493
Publicación 1990, 34 (2): 323-333, 6 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés The Hilton-Hopf quadratic form is defined for spaces of the homotopy type of a CW complex with one cell each in dimensions 0 and 4n, K cells in dimension 2n and no other cells. If two such spaces are of the same topological genus, then their Hilton-Hopf quadratic forms are of the same weak algebraic genus. For large classes of spaces, such as simply connected differentiable 4-manifolds, the converse is also true, as long as the suspensions of the spaces are also of the same topological genus. This note allays the conjecture that the converse is true in general by offering two techniques for generating infinite families of counterexamples.
Clasificación UNESCO 120403
Palabras clave español Poliedro ; Género ; Formas cuadráticas
Icono pdf Acceso al artículo completo