Presentación | Participantes | Bibliografía (DML-E) | Bibliografía adicional | Enlaces de interés | Otros proyectos DML | Ayuda  
INICIO | 20 de abril de 2024

An infinite ferm in the universal deformation space of Galois representations.

Título inglés An infinite ferm in the universal deformation space of Galois representations.
Título español Helecho finito en el espacio universal de deformación de las representaciones de Galois.
Autor/es Mazur, B.
Organización Dep. Math. Harward Univ., Cambridge (Massachusetts), Estados Unidos
Revista 0010-0757
Publicación 1997, 48 (1-2): 155-193, 40 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés I hope this article will be helpful to people who might want a quick overview of how modular representations fit into the theory of deformations of Galois representations. There is also a more specific aim: to sketch a construction of a point-set topological'' configuration (the image of an infinite fern'') which emerges from consideration of modular representations in the universal deformation space of all Galois representations. This is a configuration hinted previously, but now, thanks to some recent important work of Coleman, it is something one can actually produce! The infinite fern'' is joint work with F.Q. Gouvea, and will be the subject of slightly more systematic study in a future paper in which some consequences of its existence will be discussed. Although the infinite fern'' which appears in the last section of these notes is hardly as profound a point-set topological object as some of the classic constructions of R.H. Bing, I would like to think that he might have nevertheless enjoyed it. I want to dedicate this article to him, in appreciation of his mathematics and of his energetic enthusiasm.
Clasificación UNESCO 121016 ; 120114
Palabras clave español Grupo de Galois ; Representación de grupos ; Formas modulares
Código MathReviews MR1464022
Código Z-Math Zbl 0865.11046
Icono pdf Acceso al artículo completo
Equipo DML-E
Instituto de Ciencias Matemáticas (ICMAT - CSIC)