Presentación | Participantes | Bibliografía (DML-E) | Bibliografía adicional | Enlaces de interés | Otros proyectos DML | Ayuda  
INICIO | 28 de noviembre de 2023

A neuro-fuzzy system for sequence alignment on two levels.

Título inglés A neuro-fuzzy system for sequence alignment on two levels.
Título español Un sistema neurodifuso para alineamiento de secuencias en dos niveles.
Autor/es Weyde, Tillman ; Dalinghaus, Klaus
Organización Res. Dep. Music Media Technol. - Inst. Cognit. Sci. Univ. Osnabrück, Osnabrück, Alemania
Revista 1134-5632
Publicación 2004, 11 (2-3): 197-210, 26 Ref.
Tipo de documento articulo
Idioma Inglés
Resumen inglés The similarity judgerment of two sequences is often decomposed in similarity judgements of the sequence events with an alignment process. However, in some domains like speech or music, sequences have an internal structure which is important for intelligent processing like similarity judgements. In an alignment task, this structure can be reflected more appropriately by using two levels instead of aligning event by event. This idea is related to the structural alignment framework by Markman and Gentner. Our aim is to align sequences by modelling the segmenting and matching of groups in an input sequence in relation to a target sequence, detecting variations or errors. This is realised as an integrated process, using a neuro-fuzzy system. The selection of segmentations and alignments is based on fuzzy rules which allow the integration of expert knowledge via feature definitions, rule structure, and rule weights. The rule weights can be optimised effectively with an algorithm adapted from neural networks. Thus, the results from the optimisation process are still interpretable. The system has been implemented and tested successfully in a sample application for the recognition of rnusical rhythm patterns.
Clasificación UNESCO 110208
Palabras clave español Reconocimiento de patrones ; Lógica difusa ; Redes neuronales
Código Z-Math Zbl 1105.68400
Icono pdf Acceso al artículo completo
Equipo DML-E
Instituto de Ciencias Matemáticas (ICMAT - CSIC)