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RESUMEN

La dualidad de la programacion lineal se usa para establecer un importante
teorema de dualidad para una clase de problemas de programacion no-lineal.
El problema primario tiene una funcion objetiva cuasimonotoénica y un polihe-
dro convexo como su limitacion (constraint set).
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SUMMARY

Duality of linear programming is used to establish an important duality
theorem for a class of non-linear programming problems. Primal problem has
quasimonotonic objective function and a convex polyhedron as its constraint
set.
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1. INTRODUCTION

The concept of duality is investigated briefly for a class of nonlinear
programming problems. We are interested in a nonlinear programming
problem whose quasimonotonic objective function needs to be optimi-
zed over a constraint set formed by linear inequalities. Results proved
here generalize the duality results of Kaska (1969). The following
minimization problem is taken as the primal problem (P-P).

Minimize f(x)
Subject to xe S (1)
Where S = (x:Ax =2 b, x = 0)

The nonlinear function f(x) is quasimonotonic over the set S;
A = (a ay,..,a,) is an m-n matrix; x and b are column vectors with n
and m components respectively.

Before we formulate a dual of problem (1), we state and prove a
lemma.

Lemma 1

A basic feasible solution x, = (xj,0) is an optimal solution to
problem (1) if

feX0) = Yifey(X0) 2 0 2
for all colums a; of the matrix (4,I) in S. f(x) in the n-1 gradient vector
of f(x) at x’ over a matrix is used to denote its transpose. ¥;= B~ 'a,
where B is the basis matrix corresponding to the basic feasible solution
Xo
Proof:

f(x) is quasimonotonic over the set S. It follows from Martos (1965)
that f(x) will attain its minimum at an extreme point of the set S.

Let x = (x5, 0) be a basic feasible solution of problem (1).

In the case when x does not minimize f(x), then an improved value
of f(x) (assuming non-degeneracy) can be obtained by inserting some
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column a; into the basis and by deleting column g, from the basis. The
new basic feasible solution, £ is computed from Hadley (1963)

Yij

where

Y, = B, = 51y s ).

Inserting the O-components corresponding to the non-basic variables,
above can be written as

here

=~

= (1}, 0)

J

f(x) is quasimonotonic, therefore from Martos (1965) it follows that
f(®) = f(x) implies that

(% = X £x) = B(e; — V)fulx)
= 0Lf,®) — V£, (8] > 0.

Under the non-degeneracy assumptions, if for some j,
[of®) — Y f(%) <0

then f(x) > f(X). This shows that the insertion of the ai-th column
into the basis decreases the value of the objective function. Thus if xj
= (x5, 0) is a minimizing solution of the problem (1), then

fefxo) = Y} fuoix0) =0

should hold true for all j's = 1,2, .., n. This proves the lemma.
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The dual problem, (D-P), is now defined as

Maximize F(u,v) = f(u)

Subject to A'v — f(u) <0 (3)
—bv + W [f(wW] <0 )
uv=0

Let constraint set of (D-P) be denoted by T.

2. THE DUALITY THEOREMS
Theorem 1:

Let G be the infimum of f(x) over S, and g be the supremum of
F(u,v) over T, then

Proff:

We adopt the convention that G = + oo if the set T is null and that
g = — oo if the set S is null. It is, therefore, sufficient to prove theorem
for the case when T and S are non-null.

Let xe S and (u,v)e T. From (3) it follows that

vAx < [fxw)]'x ®)

Also from Ax > b, we have, vAx = v'b. This fact along with (4) when
used in (5) yields

(x — wfu) =0 (6)

f(x) is quasimonotonic, therefore, from (6) it follows that

J(x) = f(u) = F(u, v)
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Theorem 2:

Let x, be a feasible solution for (P-P), and (u,,v,) be a feasible
solution for (D-P), such that

S (x0) = Fluo, vo).
Then x, will minimize f(x) and (ug, v,) Will maximize F(u,v).

Proff:

From theorem 1, for any xe€ S, we have
S(x) = F(ug, vy) = f(xo).

This shows that x, will minimize f(x). Again, as for any (u,v)e T, we
have

F(u, v) < f(xo) = Fluo, vo),

therefore, (uy, v,) maximizes F(u, v).

Lemma 2:

Let x, be a solution to the primal problem. Then x, will also be a
solution to the following linear programming problem.
Minimize [f(xq)]'x

. (7)
Subject to xe S

Proof:

Let x, minimize (7). Then, we must have z; — ¢; < 0, for all j's = 1,
2, .., n (Hadley, 1963). In the present context, optimality condition of
linear programming reduces to

ij(xo) - Y;‘fxB(xo) =0

This is same as (2), the condition for x, to minimize the primal problem.
This proves the lemma.
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Theorem 3:

If x, solves the primal problem, then there exists v, so that (xg,vg)
solves the dual problem, and the extrema are equal.

Proof:

From above lemma, we have seen that if x, minimizes (P-P), then x,
is a solution of (7) also. Further, dual of linear programming problem (7)
is to

Maximize b'v

Subject to A'v < f(x,) 8)

v=0

Duality in linear programming ensures existence of optimal v, for
problem (8) and that the optimal values of objective functions in both
the cases are equal i.e.

b'vy = [fx0)] - X0 )

From (8) and (9) it is clear that (x,, v,) is a feasible solution for the
dual problem. The fact that (x,, v,) is optimal for the (D-P) is evident
from Theorems 1 and 2. Moreover, optimal values of objective functions
in both the cases are equal.

3. DUALITY IN LINEAR FRACTIONAL PROGRAMMING

Let our primal problem be

L. cx +c¢ G(x)
Minimize f(x) = o do = )
0

Subject to Ax = b

x=0
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Here ¢ and d are row vectors with n components and c,, d, are arbitrary
. constants. The objective function f(x) is quasimonotonic in nature. The
dual of (10) will be to

G
Maximize F(u,v) = ;Z ::: ;Z = H?:)) = f(u)
Subject to A'v + d f()<—c
ubject to A'v + — f(u) <
) H(u) H(u) (11)
cu du
d—bv + o <
an bv+H(u) H(u)f(u)
uv=0

In (11), let us take f(u) = t, cu = G(u) — ¢y, and du = H(u) — d,. Dual of
(10) becomes

Maximize t

d c
bject to A4’ —t < —
Subject to Av + HG) Hw)
J (12)
c
d —b 0 g0
an v+ H() H(w)

u,v>=0

(10) and (12) are respectively the primal and dual problems of Kaska
(1969).
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