TRABAJOS DE ESTADISTICA
Vol. 6. num. 2, 1881, pp. 111 a 119

KALMAN FILTER WITH A NON-LINEAR NON-GAUSSIAN
OBSERVATION RELATION

T. CIPRA

Dept. of Statistics

Charles University of Prague
Sokolovska 83

186 00 Prague 8

A. RuBlO

Dpto. de Matematicas
Universidad de Extremadura
10071 Céaceres

ABSTRACT

The dynamic linear model with a non-linear non-Gaussian observation
relation is considered in this paper. Masreliez’s theorem (see Masreliez’s (1975))
of approximate non-Gaussian filtering with linear state and observation rela-
tions is extended to the case of a non-linear observation relation that can be
approximated by a second-order Taylor expansion.
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RESUMEN

El modelo lineal dindmico con observacion nolineal y no-Gausiano se
estudia en este articulo. Se extiende el teorema de Masreliez (ver Masreliez
(1975)) como una aproximacion de filtrado no-Gausiano con ecuacion de
estado lineal y ecuacion de observaciones también lineal, al caso en que la
ecuacion de observaciones nolineal pueda aproximarse mediante la extesion de
Taylor de segundo orden.
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1. Introduction

The discrete Kalman filter (see e.g. Jazwinski (1970)) provides the
recursive estimation of the state vector in the dynamic model (or state
space model)

x, =Fx,_;+ w, (L.
y: = Hx, + v, (1.2)

where F, is a known n x n transition matrix in the state relation (1.1)
describing the development of the n-dimensional state vector x in time,
H, is a known m x n observation matrix in the observation relation
(1.2) assigning the state x to the m-dimensional observation vector y.
The n x 1 and m x 1 disturbance vectors w, and v, form zero mean,
uncorrelated and mutually uncorrelated sequences with known cova-
riance matrices W, and V,, respectively. Moreover, appropriate initial
conditions are given.

The Kalman filter is usually used to obtain recursive formulae for
the linear minimum variance estimator X} of the state x, and for its
covariance matrix

P = E{(x, — X)(x, — £i)[Y"} (1.3)

in a current time period t using all previous information Y’
= {yOa YIa"w Yt}:

=271+ PUUHHPH + V) 0 - HETY, (14)
Pl=P"! 4 POIH(HPIH, + V)" 'HP Y, (1.5)

where
7= F R4, (1.6)
P~ = F,PI_iF, + W, (L.7)

are predicted values constructed for time t at time t — 1.
The standard Kalman filter assumes normality of the disturbance
vectors, i.e.

w,~ N(O, W) , v~ N(O,V). (1.8)
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In this case it follows that
% = E(x|Y") (1.9)

so that X! is the minimum variance estimator of the state.

However, in many practical situations two types of problem need to
be addressed: (1) data are frequently distributed according to highly
non-Gaussian densities or those that have heavier tails than the normal
distribution so that robustification of the Kalman filter is necessary to
protect the state estimator against outliers; (2) the relations in the basic
state space model (1.1), (1.2) can be non-linear.

There have been many suggestions how to robustify the Kalman
filter (see e.g. Cipra and Romera (1991), Pefia and Guttman (1989) and
other works). One of successful approaches to non-Gaussian filtering
suggested by Masreliez (1975) for the linear model (1.1), (1.2) with non-
normal observation disturbances v, is based on the assumption that the
predicted state density p(x,|Y*™!) (i.e. the conditional probability density
of x, under the condition Y'~!) is approximately Gaussian with mean

X7 = E(x,|]Y'™ 1) (1.10)
and covariance matrix

Pt = E{(x, — &7 (x, — 27|V (L.11)

Theorem 1 (Masreliez (1975))

Let the predicted state density p(x,|Y'~ ') be Gaussian with mean
%71 and covariance matrix P!~ !. Further let the predicted observation
density p(y,|Y'™!) be twice differentiable. Then if follows that,

% =%"1+ P 'Hig(y), (1.12)
P, =P"' — Pi"'H,G(y)H,P." !, (1.13)
where
g 0P YT
g(y) = —[p(y /Y " H] ! ————é , (1.14)
Vi
09y,
Gy) = . (1.15)
Y,
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This paper generalizes Masreliez’s theorem to the case with a non-
linear (and simultaneously non-Gaussian) observation relation that can
be approximated sufficiently by its second-order Taylor expansion.
Masreliez’s theorem has proved to be useful in practice for robust time
series analysis since, for example, it has motivated the so called ACM
(Approximate Conditional-Mean) filters (see Martin (1979, 1981)). The-
refore the generalization of the theorem due to Masreliez given in this
paper may serve as one of the theoretical steps from linear to non-linear
robust filtering.

2. Generalization of Masreliez’s theorem

Let the observations y, be scalar (i.e. m = 1) and let the observation
relation have the form

ye = H(x) + v, 2.1)

where the function H: R" — R! can be approximated sufficiently by its
second-order Taylor expansion about the point %!~! so that

ye=HE™) + H&™ e, — %71 +

. (2.2)
+o b= 2T H R0 — %71 + o,
where
OH(% ™!
H, x:—‘)=<—(’" )) 23
0x; i=1,..,n
is the n x 1 vector of the first partial derivatives and
azH()et—l)
H () = —2 2.4
%) < Bx0%, >z1=1 i (2.4)

is the n x n matrix of the second partial derivatives of the function H(x)
at the point x = %!~ ', (This possibility is also mentioned by West (1981,
p. 159).)

Theorem 2

Let the observation relation (1.2) be replaced by (2.2) and let the
assumptions of theorem 1 be satisfied. Then the difference X! — %!~ ! can
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be found as the solution of the following system of differential equations

c . o _ R st —
E}T(Y: - X: 1) + [Bl " — q,(y,)l](x§ - X: l) =
t

(2.5)
= g(y)H (X~ HL(% ™)

under the initial condition

E, (5 — 1Y) = J (% — %" p(l Y™ Ndy, = 0, (2.6)

where I denotes the identity matrix and

B, = P"lH_(%7Y). 2.7)

Proof:

It follows from the Bayes’ Law that,

3%; - )ei_l = J (xt - )%;'l)p(xtl Yt)dxt =
er

= [pdY* " H1 7P J PP )™ o — £ Hp(x Y Ddx,.

er
The density p(x,|Y'™?') is assumed to be Gaussian so that

ap(x/Y' ™Y e e ;
= (P = R Y,
t

Thus

. . 1y Op(x,|Y'™ Y
28 = [p(y Y] J Py PAY )

R" (}xt
Integration by parts yields
o e- v —1pi— ap(yilx,) _
£ — ST = [y ] P J T plx ¥ dx,
R t

Due to the form (2.2) of the observation relation it follows that

0
R U= [p(y] Y] TP f Y g;'x‘) [—H (%" 1) —
Rn 1
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— H (%7 1)0x, — X7 H1p(x| Y™ Hdx, =

= —[p(y /Y~ H]"'P;” ‘{Hx(ﬁi‘ Y ;0— f px)Ip(x,| Y™ Vdx, +
.

t

t

0 - -
+ Ho (%) E. {P(ytl Yo h J (%, — 27 Dpilxp(x] Y1) X
Rn

Yt-—l
x [p(yd Y"l)]"d"r}} = —PHH&ET )Y O] a_p(%__) -

0

3y [Py Y* 1% — 7 1)
t

— PUH (R Y py Y )]

since

Jv p(yt|x,)p(x,|Y"1)dx, = p(.VtIYt_ 1),
R'I

J (xt - ﬁ:_l)p(xt,Y‘)dxt = )’é: - )e;‘—l.
R"

Using the relation (1.14), the last expression can be rewritten as

£ — %71 = PiTTH (%7 Dady) + 28)

— At — A At — a 2 At —
+ PUTTH (%7 [gz(yt)(ﬁ - %) - . % =% ‘):|,
t

which implies equation (2.5) holds.
The initial condition (2.6) is satisfied as

E, (% — 57 HY'TY) = E,{E(x|Y") — E(x Y)Y} =
= E(x|Y'"!) — E(x|Y""!) = 0.

Remark 1

If the observation relation is linear of the form (1.2) then H (%! }) =
= H, and H_(%!"!) = 0 so that (2.8) reduces to formula (1.12) from
Masreliez’s theorem.
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Remark 2

Given the function g,(y,), the system (2.5) can be solved by the
methods recommended for linéar non-homogenous systems of first
order differential equations. In the special case where n = 1 the follo-
wing explicit solution is obtained

[ %71 4+ Py VH (% Dg(»v) for H (%71) =0,
y
J ©exp (B 'u)p(u] Y™ Vdu
-1

At At—'1+ x(x:_l) B — o0 1

X, = 9{Xx — T - - -

' O H (Y] exp (B, 'y p(y/Y'™")

for H (%71) > 0,

(2.9)

st 1 J exp (B, 'u)p(u|Y' ™ )du
)et—l_i_ X(x’ ) B—l e -1
| H(T! © exp (BT ypnd YT

for H (%71 <0,

where p(u|Y'~') denotes the predicted observation density in the inte-
grand (see Cipra (1990)). Then again, theorem 2 can be reformulated for
vector observations, i.e. for m > 1.

Remark 3

Using similar approach to that employed in the proof of theorem 2,
the following linear non-homogenous system of second order differential
equations for the covariance matrix P’ can be derived:

Pl —B --az P 4 P! G 21p!
' [ (.)"yF r — gdyy) 5_y, : — L[GAy) — (9y) ]Pr}Bz =
=P — P~ 1{[6:()’1) = (G IH R HH (R = g(p)H %71 —

—[IJ(y,lY'"‘)]'1{1’f1xx()2 1) [p(y,IY’ D=2 E =% THG(R ) +

+ HolX™ ’)—*[p(yfIY' D= XTHIHLRTY + (2.10)
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2

0
+ H(%™Y)

—— Y @R — £ IH (R P —
0y;

— (& = XTHE =K7Y

The procedure for the solution of the system (2.10) can be complicated
even in simple cases. Therefore it would seem prudent to approximate
its solution by the formula (1.13) from the linear case.

Although the obtained results are difficult to apply in practice, one
can draw some conclusions from them in a similar way as in Masreliez
(1975, pp. 108-109): (1) the formulae obtained in theorem 2 also stress
the importance of the score function g(y,) for the predicted observation
density p(y,/Y'"!) in non-linear non-Gaussian filtering (the explicit
formula (2.9) with n = 1 uses the predicted observation density for the
non-linear case in contrast to the application of its score function for the
linear case) thereby showing a relation to the maximum likelihood
method; (2) a qualitative role of non-Gaussian distribution is also
indicated for non-linear filtering. The possible application of this theory
to ACM filters is the topic of further investigations.
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