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ABSTRACT

The paper studies the problem of selecting an estimator with (approxima-
tely) minimal asymptotic variance. For every fixed contamination level there is
usually just one such estimator in the considered family. Using the first and the
second derivative of the asymptotic variance with respect to the parameter
which parametrizes the family of estimators the paper gives two examples how
to select the estimator and gives an approximation to a loss which we suffer
when we use the estimator with approximately minimal asymptotic variance
instead of the estimator with the precisely minimal.
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RESUMEN

En este articulo se estudia el problema de eleccion de un estimador con
aproximadamente minima varianza asintotica. Para cada nivel de contamina-
cion fijado habra, por lo general un Gnico estimador de éstos en la familia
considerada. En este articulo se dan dos ejemplos sobre como elegir el estima-
dor mediante el uso de la primera y segunda derivada de la varianza asintotica
con respecto al parametro que parametriza la familia de estimadores; también
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se da una aproximacion de la pérdida sufrida cuando sc utiliza el estimador
con aproximadamente minima varianza asintotica, en lugar del estimador con
exactamente la minima varianza.

Titulo: Indice de eficiencia y deficiencia local de los estimadores de localizacion
de Huber y de los a-estimadores.

Palabras clave: Indice de eficiencia, deficiencia local, nivel de contaminacion.
Estimadores de localizacion de Huber, x-estimadores.

Clasificacion A.M.S.: 62F35, 62J99.

1. Introduction

In 1964 P. J. Huber has opened by his pioneer paper “Robust
estimation of location parameter” a new region of the mathematical
statistics. He has found a minimax solution of the location problem in
the mixture model of data.

Let us recall this result to be able to enlighten goals of this paper. At
first we need some basic notations.

Let N denote the set of all positive integers and R the real line. 4 is
assumed to be the Borel g-algebra of the subsets of R and .# the set of
all probability measures defined on (R, %4). Finally, denote by # the set
of all one-dimensional distribution functions. The Huber result was
derived under the following assumption:

Assumption A. Let Ge % have a density ¢(t) with a convex support.
Moreover, let g be twice continuously differentiable with —log g(t) strictly
convex of the support of ¢.

Without loss of generality let sup {te R:¢'(t) > 0} = 0. Finally, for
any ¢€ [0, 1], define the model of contamination of data

Pe)={FeF :F= (-G +¢ll; HeF) (1)

and put Z = {#(¢)},c(0.1; The value £ may be interpreted as a contami-
nation level. This value may be estimated (see Visek (1985)) but gene-
rally it is unknown but fixed, being given by the physical circumstances.
The experience of applied statisticians says that it lies ussually between
1% and 10 % -——see Hampel et al 1986. Now, let random variables
X4, ., X, be independent and identically distributed according to F(x
— A) where F € #(¢) for some fixed £€[0,1] and some AeR. Let A, ,
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(X4, - X,) be an estimator of A and assume that its asymptotic distribu-
tion and the variance of a random variable distributed according to it
exist for all F € #2(¢). Then denote this variance by as. var A, ,) and put
for t€[0,1]
V(A, ,,7) = sup as. var 4A, )
Fe A1)

The task is to find an estimator such that V(A, ,, ¢) is minimal among all
unbiased estimator of A. Huber has shown that such estimator A, , can
be found as a solution of

n

Y WX —1)=0

i=1
where
—k(e) {teR:g'(0)/g(t) = k(e)}
Y(t) = —g'()/g(t) {teR:1g'1)/g(t)] < k(e)}
ke) {teR:g'(t)/g(t) < —k(e)}

and k(e) is related to ¢ and to ¢(t) by the equation

ti(e) X .
u—®”=J gmm+“wm£f“m 2)

ol€)

with t, (s)<t,(c) being the endpoints of interval {teR :|g'(t)/g(t)| <k(¢)},
i.e. for finite interval we have

g'(teD/g(ti(e) = (—1)k(e)

for i = 0,1 (see Huber (1964)). Notice that for ¢ > 0 either ty(¢) > —oc
or t,(¢) < oc and e.g. for the symmetric density g both inequalities hold.
In other words, An_,, is the maximum likelihood estimator for the
density

(1 — &)y(tole)) exp {k(e)(t — to(e)} for t < t(e),
16 = (1 — €)g(1) for to(e) <t < t,(¢),
(1 — &)g(t,(&) exp {— k@)t — t,(e)} for t = t,().
So, we have at our disposal the whole family of estimators S, ,
= {Aa. n}ce[o. 1
Let us assume that the “true” (but unknown) value of the contami-
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nation level is ¢, and that we have selected (for processing our data)
from the family S, , the estimator A,, ,. Then our loss is given by the
difference

V(Aal. n> 80) - V(Aao. n> 8O)

(because if we know the true value of the contamination level ¢, we
would select A, , instead of A,, ,). The paper offers an approximation
to this loss. Since we shall consider only the asymptotic variances let us
write V(A,, ¢) instead of V(A,, ,, ).

Another source of whole families of estimators is e.g. the minimal
distance estimation. The authors usually consider a whole family of
distances, frequently parametrized by a real (sometimes multidimensio-
nal) parameter, say o, a €I, I < R. It implies that they then obtain a
family of estimators, say % = {T,}, ..

Describing the contamination of data again by some model, e. g. by
P(g,), there is a question which estimator T, should be selected. One
possibility how to establish a relation between the parameter a of the
family ¥ and the parameter representing the contamination level is to

0 DL
evaluate the derivative % V(T, &) and to find an a(e,), for which it turns
o

to be zero. Naturally, having learnt that the estimator T.(e,) is the
optimal one for the contamination level ¢, we have to solve again the
question how large is the difference

V(’T;,, &) — V(Ta(so)a &9)

for some o, from the neighbourhood of a(¢,) because not knowing the
contamination level ¢, one selects only an approximately optimal
estimator T,,.

2. Efficiency rate and local deficiency

Definition 1. For a real interval T let S = {0, ,}, . be a family of
estimators such that for any (y,e)eI’ x (0,1) there is a neighbourhood
O(y) such that V (0,,¢) exists for all ve O(y). Then if for some (y,&)e T’
x (0, 1) the limit

V@0, — V(@,,, 8)
lim

vy Vv — '})
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exists, we shall call it the efficiency rate of family S with respect to the
model P at the point (y, &) and denote it ER(y, ). Moreover, if for some
£€(0,1) and some ke N there are points y,eI', i = 1, 2, ..., k such that
ER(ye) =0, find j, 1 <j < k such that V(GAW, €) = ming ¢; <k V(BAW, e). If
then there is a neighbornhood O(y;) such that &R(v,¢) exists for all
ve O(y;) and also the limit

. ER(v,¢)
lim

V—”)’j Vv — y]

exists, we shall call it the local deficiency ¥ %(e) of & with respect to the
model P at the point ¢. Moreover we shall say that the estimator 9.“ is the
optimal one in & for the mixture model P(g).

Remark 1. The efficiency rate £%(v, ¢) (which is nothing else than
v, e
v
fixed ¢€ (0, 1). Therefore in the neighborhood O(y;) it indicates how
quickly we may achieve the efficiency when changing v. Similarly, using
the local deficiency we may write an approximation to (4) in the form

) represents the slope of the curve V(0,, ¢) as a function of v for a

% LIhe)v — 7).

On the other hand, (4) represents the deficiency of the estimator which
we have selected, with respect to the best possible estimator. It inspired
the name of the second characteristic.

Remark 2. As follows from the cases studied below we may expect
to meet (frequently) with situation when k = 1, i.e. that there is just one
point at which the efficiency rate is equal to zero.

Remark 3. It the past twenty years further models of contamina-
tion appeared. They were based e.g. on the Prokhorov or the Kolmogo-
rov distance, on the 2-alternating (and 2-monotone) Choquet capacities
or on a combination of the mixture model and the model with neigh-
borhoods implied by the total variation.

Moreover, the idea of describing the asymptotic behaviour of statis-
tical procedure by the efficiency rate and the local dificiency can be
applied on the statistical test as well (see Visek (1987)). Then is it

71



TRABAJDS DE ESTADISTICA. Vol. 6. Nim. 2, 1991

necessary to give the definition of the efficiency rate and of the local
deficiency in a little more general form.

3. Efficiency rate and local deficiency of Huber’s
location estimator

In what follows we shall derive the efficiency rate and the local
deficiency for the Huber estimators of location and of the z-estimators.
We shall assume further that the density g is symmetric to avoid a
case when t,(¢) or t,(¢) can have infinite absolute value. The cases
when either t,(¢) = —oc or t,(¢) = o need to be treated separately;
however it is only a technical matter. Let us denote for any random
variable .# and any distribution function F € .% by E.# the mean value
of .# with respect to F if this meean value exists. In the above mentio-
ned paper Huber gave for any ¢€(0, 1) a formula for the supremum of
the asymptotic variances of the location estimator A, , namely

(1 — e)Egy? + & k*(e)

V(A ) = (1 — e)Egy,)?

dy (1)

where ;=

(this derivative exists under the Assumption A and for

any ¢€(0, 1) it is —as well as -- bounded). Following nearly slavishly
Huber’s derivation one finds that
- 1 — oEqy? + ek(y
VA, e) = ( e)EgY; 152 ) . (5)
(1 — e)Egy)
To be able to evaluate the efficiency rate and local deficiency of
Huber’s estimator of location (if any) we shall need the first derivative of
k(y) with respect to y. It will be found in the next assertion.

Assertion 1. Let the Assumption A be fulfilled. Define for any fixed
z <0 and t > z a function r,t) by

‘ g*(z) g1
= ? d ) e — D
r(t) J g(y)dy + e

Then r(t) is differentiable and strictly decreasing.
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PROOF: A straightforward computation gives

dr(t) _g*(0)-g"(t) — 9()[g'()]?

, (6)

dt [g'(]*
Due to requirement of the strict convexity of —logg(t) we have
g(t)-g"(t) — [g'(t))]*> < O for any tre R and the proof follows. O

dr(t)
it

In what follows let us write r (t) instead of

Lemma 1. Under the Assumption A we have

dk(y) k3(7,) i
[ d"/"/ :|T=_“ == (1 _/;1)2 {g(to(r) + g(t, ()} !
PROOF: Let 7,7, €(0,1) and 7, < y,. Then we have from (2)
- P glto(r2) + gt 4(2)
0<(1—=7,)7 ' =(1=7y) ‘=j g(t)ydt +=2 zkf 9t:Ga))
to(72) (/'2)
i glto(71) + (£4(71))
— g(tydt — - .
Jlo(rl) I ) k(;‘l)

From the ASSERTION 1 it follows that ty(y,) < to(y,) and t,(y,)
< t(y,)- Moreover, from (3) we have t,(y,) < t,(y,). So we have arrived
at

—or < o) < to(72) < £1(72) < ty(7y) < oC. (8)

Observe that r(t) does not depend on z (see (6)) and taking into account
(8) one may rewrite (7) into the form

V2 — %1 1o(72) t1(51)
= — r(t)dt + j F(t) dt}.
(1 - Vl)(l - ‘/2) {J;()(}'x) t1(y1)

and since ri(t) is strictly negative it implies that for 7, 7, we have
tdy,) = tdy,) for i = 1, 2, and hence due to (3) also k(;,) = k(3,). Now
put

M = sup {ri{t) 1€ T = [to(3) to(32)] W [t1(22)s 11701}
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Since r,(t) is negative and continuous on the closed and bounded (and
hence compact) set T we have M < 0. But it implies

v2— 71 = —(1 = 7)) = y)M{to(yz) — to(y1) + ti(y1) — t1(y2)} > 0.

Let R* be the image of the support S of the density g(t) obtained by
—g'(t)/g(t). Since the ASSUMPTION A implies that g'(t)/g(z) is striclty
monotone we may define £(y): R* > S as an inverse mapping to
—g'(t)/g(t). Due to positivity of g(t) on S and existence and continuity of
g"(t) (see the ASSUMPTION A) there is a continuous derivative of ¢,
say ¢'. Now taking into account (3) we may rewrite (2) into the form

ru«m 9= k) + gk

(1—=yt= g(t)dt +

&~ k() k(y)
Moreover we have

EH—k(r2) &= k(r2))
J g(t)dt = J {9(&(—=k(y)) +
= k(1) &~ kO
+ G gy, ) [0 — E(—k(y,))]} dv (10)

for a suitable point 4, yge v which is an element of [&(—k(y,)), v]. Denote

K- k(r2)
R(y,) = j 9' Ay, 50 v — E(—k(y )] du +

&~ k(1)
&kir1)

+ J gy, 5, ) [EK(,)) — udu
E(k(y2)

where again 7., ,, , is an appropriately selected point from [u, {(k(y,))]-
Since g'(y) is continuous, ve [&(—k(y,)), &(—k(y2))] and ue [E(k(y,)),

&(k(y,))] we may find for a fixed (and sufficiently small) A > O finite
constants K, and K, (depending only on A) such that for any
v, €(y, 71 + A) we have
K {[to(r2) — to(y)]* + [t:(y1) — t1(72)]*} < R(p2) <
< Ko {[to(y2) — to(y1)1? + [t:(y1) — t1(y2)1%}
But it together with (8) and (9) implies that

lim
Y2 NV 72— "N

R(y;) =0 (11)

74



RUBIO, A. y VISEK, J. A. EFFICIENCY RATE AND LOCAL DEFICIENCY OF HUBER'S LOCATION ESTIMATORS...

because t,(y,) — t(y,) for y, » y, and i = 0, 1. Using (10) we may
rewvite (7) as follows.

4 —y;lilh_ 7,) = —g&—k@)NE(—k(y2) — &(—k(,)] —

— g(&k(y LKy 1)) — Ek(r2))] — R(y2) +

gE(—k(r2)) + g(E(k(r2)  g(E(—k(71)) + g(Sk(y1))
k(y2) k(y:) '

Now, using the Mean Value Theorem, and selecting appropriately

points v,,, w,, €(—k(y,), —k(y,)), Z,25 Vy2 € (k(y,), k(y4)), v, € (E(—k(y,)),
E(—k(y,))) and 7., € (S(k(7,)), &(k(y,))) we obtain (subscript y, should

emphasize that y, is assumed fixed and we are looking for a limit when
YN )
2 %71

+

Y2 — "1
(1 =y —1y,)

— g(&(k(y,)) - él(zyz) + T(y;, 72)} X (k(y1) — k(v2))

+ R(y2) = {—9(&(—k()- E'(v,,) -

where

ge(—=k(y )+ gk )+ k()G (v,,) - Ew,,)—g'(z,,) - E(¥,,)]
k(y,) - k(y,) ’

Taking into account (3) and continuity of g and &

T(y2,71)=

lim {—g(é(—km») (o) + M(W—} ~ 0
V2NV k(?z)

and

lim {—g(é(k(v,»)- £(z,)

Y2 N7

g'(1,,) - &0y,)
-3 =0
k(y,) }

But then we conclude from (11) and from the continuity of g and & that

1 _ g(t o(71) + g(t,(y1)) . lim k(y1) — k(y,)
(1 - “/x)?' ky(y1) 7Ny Y2 TV

Along similar lines we may obtain the same equation for the left-hand
side limit and the proof follows. O
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Remark 4. From the LEMMA 1 it is clear that under the Assump-

d?k(y)

tion A the derivative e also exists but as we shall see later we shall
/

)
not need the second derivative of k(y) although it may seem that for
evaluation of the second derivative of the supremum of asymptotic
variances V(Z&.,, ¢) (with respect to y) we need it.

It what follows we shall use the LEMMA 1 only in the sense that it
guarantees that the first derivative of k(y) with respect to 7 exists (and is
strictly negative for all y €(0, 1)). The explicit formula for this derivative
is useful only when we need to evaluate its numerical value, e.g. when
evaluating the efficiency ratec or the local deficiency.

According to the Definition 1 we have for Huber’s estimator of
location

EAG, =lim (v—) " (1 =) {(1 — ) [(E¥,) Eqi? —(Eq¥\ E?] +

+ e[R2V(E¥})? — KOIEc¥ ) THEW,) " (Eg¥))? (12)

if this limit exists. Hence the following lemma will be helpfull.

Lemma 2. Under the assumption A we have

dEY; 1k(~
= 2 KOG + 1 — Gl (13)

and

dEV, dk(;
Tl = Lottt + o)

: (14)

PROOF: Earlier than we start to prove assertion of the lemma let us
g'(1)
g(t)
exists under the Assumption A. From the definition of i, we have for y
<v

recall that ¢(z) is the inverse function to y(t) = — and hence &'(z)

Eqy? — Eq¥2 = G(E(—k(W)k*(v) — G(E(—k())kX(y) —
E(—k(v)) E(k(7))
— f W2(t)g(t) dt — J Y2(0)g(t) dt +
E(—k(y)) E(k(v))

+ [1 = GEKMNIK*v) — [1 — GEKENIKR)
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because
E(—k(;) < S(—k(v)) < c(k(v)) < S(k())
(see (8)). Then we easy verify that
}i\r‘n_' (v = ) LGE—=kMK(y) — GIE(—=K(K()] =
= lim (v—y)7!
VN
{[G&—k() = G(E—k(MIK* ) + G =k K (v) — K*()]) =

dk(y . dk(y
— = kOE (K)o -+ 26(E(— ki) %

(16)

Making use of the Theorem about differentiating an indefinite integral
with respect to its boundaries (see Hewitt, Stromberg (1965), theorem
18.3) we arrive at

E(=k(v))
lim (v —7)"" J Y3(0)g(e) de =
VN E(—k())

dk(y)
o (17)

= YHE(—kEMIE(— k) - (= k()

Realize that the integral from (17) stays in (15) with the negative sign
and that Y2(&(—k(y)) = k*(;). Hence when we shall look for the differen-
ce of the right-hand sides of (16) and (17). We obtain

Ik(y Ik(y
‘ df/’ — 2K()- Gltoy) -~ df/)

2k(;)G(E(— k()

Deriving a similar expression for the third term and for the difference of
the forth and the fifth terms in (15) one concludes the proof of (13) for
v N . The proof of (13) for v .~ y can be carried out nearly along the
same lines.

Now the proof of (14). Let v < 7. Then

S(— k(7)) E(k(v))

Ying(r)dt + j Yn)g(r) dt. (18)

E(k(y)

EGW:- - EGW,- = j

E(—k(v)
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Using once again the Theorem about differentiating an indefinite inte-
gral we obtain

lim (v — 9) 7 [Ee¥, — Eg¥,] = {Y&(=kO)) - gE(—kG)) - E(— k) +

dk
+ WERMICEKE)) - E KD} %

(notice that the boundaries of the first integral in (18) are in the opposite
order —with respect to v and y— then of the second one). Since

YEk(y)) = [EKEN] ™, H—k()) = to(y) and E(k(y)) = t,(y) the proof of
(14) for v .~ y follows. Deriving the same expression for v \x y one
concludes the proof of (14).

Theorem 1. Under the Assumption A we have for the family &, ,
and for the model of contamination 2

dk ~
ER(y,€) = 2 —(—g—) { —V(A,, &)lgte) + 9t NI (Ey)) ™" +

+ k()LLG(o(y) — G, ()11 — &) + 11(1 — 6)‘2(EG¢;)“2}

for any (y,¢€) € (0, 1)%. Moreover, the local deficiency is given by the
formula

dk(y) J* "
LD(e) = 2[7%)2] (Ey)~ H{=V(A, 9)lg(t1()E'(ke)) —

— g'(to(e)S'(—k(e)] + [[G(to(e)) — Gt (e)II(L — &) + 1 —

— k(&) [9(2o(e))E'(— k(&) + g(t,(e)E'(k(e)I(1 — &) *(Eyr) ™! —

— ke)[[G(to(e) — G(t1(NI(1 — &) + 1]1[g(to(e) +

+ g(t,(e)I(1 — &)~ XEY;) "%} (20)
PROOF: Let us rewrite the right-hand side of (12) into the form

(=771 =) {1 —e)[(Ec¥;) [Ec¥s — Eq¥i]+ Eq¥ [(Ec¥y)* — (Ec¥n)* 11+
+e[k2O)(E¥;) —(Eg¥)*] +(Eg¥i)*[k* () — KOITHEG ) (Eg¥;) 2.

y=¢

(Since the all mean values will be taken with respect to G let us drop the
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subscript G.) Now taking the limit for v —» y and using the LEMMA 1
one achieves

dk
(1- 8)‘2{(1 - 8)[( Ey)* - 2k(r)[Gtoy) + 1 — Gt ()] — ﬁ -

dk
— Ey7-2- EYlg(to() + g(t, ()] ﬂ]

~ )2 BTt + ot T -

—(EW) 2 k) d";”]}-(w;)*

Taking into account (5) one verifies (19). Earlier than we will continue
with the second part of the proof of Theorem let us recall that Huber’s
estimator A,, is the minimax estimator which implies that V(A, ¢)
= ming <, < V(A ¢) and hence (due to existence of the partial derivative
of V(A, ¢) with respect to )

ER(e, €) = I:a—t/—(%:l = 0.

Now, to find the formula for the local deficiency let us write down the
derivative of the righ-hand side of (19). We obtain

d2k 60, [dk (y):l_l

dk ov
d;”’ {[ Y8 Lo + ot -

+2

“ VA, L gt - E(—kO) + ¢t £’—‘V—)](Ewy) *

aEY, |

+ VB, o)) + oM E) =

+ {M [[G(to(7) — G(t; ()] — &) + 17 + k() [ —g(to)E(—k(y)) —

A NEKN(L — o ) (”}(1 B2
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S dE
— 2k()LG(() — G(e NI — &) + 1101 — &) *(EY)” dv fp }

For y = ¢ the first two terms of (21) are equal to zero. Moreover notice
that the sum of the fourth term and of the half of the last term (ie.
without the factor “27) gives

dE
{ —8a, o) (Bt }
d/’ 7=€
and hence it disappears for 7 = ¢, too. The rest of (21) may be written in
the form

dy
+ [LG(to(7) — G, (]I — &) + 1 —
— k() [g(to(NE (= k) + gt (ME RGN — )I(1 — &) AEP.) ™' —
—k()LG(o(7)) — Gty (NI — &) + 1Lg(to(2) + gt 1 (7)1 — &)~ 2(Eg’) ™}
Substituting ¢ instead of 7 gives (20).

dk(}’) 2 y—1 n ’ 2t ’ ’
2] —= | (EYY) ™ H{=V(A, [g' ;DI KE) — g'teNE(—kG)] +

Remark 5. The numerical evaluation of (19) and (20) may be
sometimes considerably simplified by the utilization of formula (2),
written in the form

[Glto(e)) — G(t1(eN(1 — &) + 1 = k™ (&)1 — &)[g(to(e)) + glt,(e))]-

1000

.

|
[}
c
§ 100t
d -
e b
f
i L
¢
i 10k
e E
n C \\\‘\\\\\\\\_‘_______._-‘___
c r I
y L
1 1 1 1 1 1 1 1 1 1
(] 006 01 015 0,2 0,25 03 0,35 04 045 06

epsllon

Figure 1. The local deficicncy of the family of Huber's estimators for &€ (0, 0.5)
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4. Efficiency rate and local deficiency of the a-estimators

To illustrate the usefulness of the introduced notions we shall apply
them on a family of estimators which was constructed without any
apparent connection with a model of contamination. The z-estimators
have been chosen for this purpose. For the definition and more informa-
tion about their properties see Vajda (1984) and references given there.
For the convenience of reader let us recall some basic facts. The -
estimators are estimators of the minimal distance type where a modified
version of a-divergence was used as a measure of distance between the
empirical distribution function and a distribution function from an
assumed family {F},.o. The a-divergence of two probability measures,
say P and Q (defined on a measurable space (Q, f§)) is the mean value of
their transformed likelihood ratio. In other words, the x-divergence is a
special case of f-divergence introduced by Csiszar in 1967. The transfor-
mation of the likelihood ratio has the form

t(u) = [sign (1 — 9)J(1 — u¥)/x

for x € (0, 1) U (1, oc) with ty(u) = —In u. It is clear that for the
case when P is an empirical distribution and Q an absolutely continuous
one we obtain the a-divergence is equal to oc. Hence a modification of
the a-divergence is inevitable. One possibility is to restrict ourselves,
when defining x-divergence, on a sequence of algebras {f,};=, — f
~—see Vajda (1984)- - to obtain a reasonable result. The family {Fy}jco
(usually denoted as the projection family) is selected to explain the data
and need not necessarily include the distribution function which genera-
ted data. To give the reader an idea about behaviour of the a-estimators
let us recall that their influence functions are frequently of redescending
type and that they are close to the influence function of the well-known
M -estimators with the redescending y function. If we compare the figure
4.1 of Vajda (1984) which gives the influence function of the x-estimator
for {Fy},cx and a = 0.2, with the figure of influence function of A 25 of
Andrews et al. (1972), we find that the influence functions are very
similar. We shall restrict ourselves on the family of the normal distribu-
tion with ye R and o® = 1, i.e. we will consider the family {N(u, 1)} ,cg.
Then the a-estimators are defined as follows

zliX, forot———(),

ni;=1

&1
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ﬁa {— O((Xi _ t)Z

= argmin,.gx Y, exp 5 } for x€(0, 1).

i=1
So as the family S we shall consider {f,},c0. 1) (Naturally f, depends
also on the sample size n but because we shall consider as the criterial
function again the asymptotic variance of fi,, this dependence need not
be emphasized in the notation.) By the model of contamination we shall
understand again P = {P(¢)},[o, 13- Finally, by V(i,, &) we shall denote,
similarly as above, the asymptotic variance of f,. Since in Vajda (1984)
the influence function of the a-estimators was derived a simple computa-
tion gives for our case
o (Lo
V(.u'w 8) - (1 . 8)2
Taking the derivative we obtain

T4+ aP(30(1 —¢g) 200—1
1— 8} {(205 + 1)%2 T .E.CXP{_I}}

It allows to establish a relation between ¢ and o, namely to find such of(e)
for which &2(fi), ¢) = 0. We find immediately that it is simpler to give
g(o) (i.e. for a fixed « find such &(«) for which £%(4,, &(o)) = 0). We obtain
exp {—1}(2a + 1)>*(1 — 20)7] 7!
303 '
The Figure 2 presents this relation and shows that for ¢ increasing from
0,5

{20 + 1)73%(1 — &) + e 'exp {—1}}.

ER(f1,, &) = [

8(x) = [1 +

0,4 -

03[

N ——p

0,21

0,1

0 L 1 1 1 1 1 L 1 1

o o005 o1 015 02 025 03 035 04 045 05
epsllon

Figure 2. Dependence of the optimal x on ¢ for the a-estimators.
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0 to 0.5 a(e) increases from O to 0.43. In other words, it means that for
any contamination level (represented by &) we can find € (0,0.5) for
ER(fiyey, €) = 0. It implies that if we show that for the corresponding
values ¢ and o(e) the local deficiency is positive, we can find for any
contamination level ¢ such value ofe) that f,,, has minimal possible
variance among {/,},c (0. 0.5 Let us recall that it is reasonable to take
into account only ¢ € (0, 0.5) because for ¢ € (0.5, 1) we have a larger part
of contamination among data then the part of proper data and it seems
not to be generally senseful.

Now let us derive the formula for the local deficiency. We arrive at

1 2 1—-3

2(1 — ofe))

—_— —1}5.
o e (1)
The Figure 3 exhibits the dependence of the local deficiency on the
contamination level &. We see that £ %(¢) is positive for ¢€(0, 1) and it
implies that V(i, () is indeed minimal among all V(4,, &),
ve(0,0.5).,
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<030 —~0—=0Q —NOO —
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epsilon

Figure 3. The local deficiency of the x-estimators.
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5. Concluding remarks

The second example considering the family of the a-estimators
demonstrated that using the efficiency rate we may find the estimator
with the minimal (asymptotic) variance in given family of estimators —
variances being taken with respect to a model of contamination. Natu-
rally, it would be possible to give another examples of the applications
of the introduced notions, for instance the optimal choice of regression
quantiles for given contamination level. The authors hope to do so in a
next paper. For the extensive example of the application of the notions
in the statistical testing we refer to Visek (1987).

Using the local deficiency we can write the approximation to the

1
difference V(fi,, &) — V(dyq ¢) in the form 3 LY(e)[x — x(e)]?, ie. the

approximation to our loss.

It may be also interesting to compare the local deficiency of different
families of estimators. The Figure 4 offers such comparison of the local
deficiency of Huber’s estimators of location and of the x-estimators. We
may observe that for ¢ less than 0.125 the local deficiency of the a-
estimators is less than that one of Huber’s estimators of location. On the
other hand for the values of ¢ €(0.125,0.5) the local deficiency of the -
estimators is somewhat larger. As it was already mentioned the present
point of view of the applied statisticians is that the usual contamination
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Figure 4. Comparison of the local deficiency of Huber’s estimators and of z-estimators.
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level is somewhere between 1% and 10 % (even for very carerfully
measured data -— see Hampel et al. (1986)). Taking into account all
these facts it may be preferable to use the x-estimators instead of
Huber’s ones, especially for the small values of e.
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