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SUMMARY

This paper discusses the Bayesian reliability analysis for an exponential
failure model on the basis of some ordered observations when the first p
observations may represent “early failures” or “outliers”. The Bayes estimators
of the mean life and reliability are obtained for the underlying parametric
model referred to as the SB(p) model under the assumption of the squared error
loss function, the inverted gamma prior for the scale parameter and a generali-
zed uniform prior for the nuisance parameter.
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1. INTRODUCTION

In a paper of Bhattacharya and Singh (1979), the problem of classi-
cal reliability estimation based on a first few ordered observations from
the exponential distribution for situations where the first failure occurs
at a very early stage of a life test and is suspected to be an “early failure”

Recibido: Agosto 1989.
Revisado: Abril 1990.

17



TRABAJOS DE ESTADISTICA. Vol. 6. Nam. 1, 1991

or an “outlier”, was studied under a suitable parametric model. The case
of multiple outliers for this parametric outlier model (POM) was
subsequently studied in the classical set-up by Bhattacharya and Singh
(1986), wherein the editor of the journal in question referred to this
POM as the “SB Model”. This paper discusses the Bayesian analysis for
this multiple outlier SB(p) model, that is, when the first p(>1) ordered
observations from the exponential failure model are suspected to be
“early failures” or “outliers”. Our analysis is carried out under the
assumption of the usual squared error loss function and suitable prior
densities for the parameters involved. It may be mentioned that in a
recent paper, the Bayesian reliability analysis of the SB(1) model was
discussed by Bhattacharya and Singh (1988) under a different assump-
tion for the joint prior density of the underlying parameters.

2. THE SB(p) MODEL

The SB(p) model for p outliers or early failures to be considered here
can be described as follows: For a preassigned r, let x, x,, ..., X, be the
first » ordered observations available with (n — r) survivors at the
termination of the life test based on n test units as in Epstein and Sobel
(1953). We assume that for a given p(1 < p < r), the first p failure times
Xy, X5, ., X, can possibly be «early failures» or «outliers», that is, they
come from a population specified by the pdf

1
ff)=—f2) O<x<ow;0>00<v<1), @.1)
vO ~ \v0

while each of the remaining observations x,(i =p + 1, p + 2,..,r) and
also the (n — r) survivors come from a popultion with the pdf

o0 = ; f(%) 0 < x < o0; 0> 0), 2.2)
where
fX)=e* (0<x < o) 2.3)

The case when v = 1 is referred to as the “homogeneous case”, while the
case when 0 < v < 1 is referred to as the “nonhomogeneous case”. In
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this latter case only, x,, x,, .., x, are genuine early failures or outliers
and then the constant v provides a measure of what is usually referred
to as the “spuriosity coefficient”. This POM for multiple early failures is
somewhat akin to the “labelled slippage model” of Barnett and Lewis
(1978) and the possible outliers are identified here as in the paper of
Veale (1975). Our model is essentially different from the so-called
“exchangeable model” of other authors working on the theory of
outlying observations (Kale and Sinha, 1971; Sinha, 1973). The assump-
tion of the exhangeable model, wherein each of the sample observation
has an equal probability of being an outlier, seems to us to be unrealis-
tic in so far as the discordant observations, if any, are more likely to be
the extremely small or the large ones (cf. Barnett and Lewis, op. cit., p.
37). In the SB(p) model being considered here, one can test whether the
first p ordered observations x, x,, ..., x, are outliers by testing a prelimi-
nary hypothesis

H:v=1
against the alternative
H:0<v<l,

following an approach that is similar to the one usually adopted for
statistical inferences based on incompletely specified models (see e.g.
Bancroft, 1964). This approach is available in Bhattacharya and Singh
(1979, 1986), wherein an UMP test of H based on the likelihood ratio is
discussed and a pretest estimator of 0, depending upon the result of this
preliminary test, is studied in detail. Here we shall consider a Bayesian
approach for the estimation of (), wherein the test of possible discor-
dancy on the basis of the nuisance parameter v is dispensed with, and
the problem of possible outliers is taken care of quite naturally in the
Bayesian framework. The Bayesian statistical analysis is carried out here
under the asumptions of the squared error loss function, a priori
independence of v and (), the inverted gamma prior pdf for 0 and a
generalized uniform prior density for the nuisance parameter v (cf.
Bhattacharya, 1967). Thus, the prior densities for # and v are respecti-
vely given by the expressions
p

Kp-0ine=m ' (0<0< o0y 1 p>0), 2.4)
['(p)

g(0) =
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and
gv)y=(1—=by? O<v<1;0<b<). (2.5)

It may be observed from (2.5) that the density g(v) decreases when v
moves away from zero towards unity, so that the a priori probability
that the observations with mean v are the smallest observations will be
large. This fact is compatible with our model assumptions. Now we are
ready to carry out the Bayesian analysis in the next section except that
we need the likelihood function (LF) of the observed data under the
SB(p) model which is stated (cf. Bhattacharya and Singh, 1986, equation
(3-1)) below:

! r
10,v) = ——— ] b;}077e 5" (0<0<o0,0<v<1), (26)
(n—n! j=1
where
p r
S'=v-1<z xi>+< y x,.>+(n-—r)x,, 2.7)
i=1 i=p+1

and

bj=n—j+ D) '[n—p+vip—j+ D] (G=12.p). (28)

3. THE BAYES ESTIMATOR OF THE MEAN LIFE

We shall first rewrite the LF at (2.6) in a form that is amenable to
the Bayesian analysis. Thus, the kernel of the LF for the SB(p) model is
written as

16, v) {

J

)4
cj}e—'e-"“lv“op”pl 0<f0<o0,0<v<l), (31
=1

where the constants Ci(j = 1,2,..,p) and the statistics O, and T, are
defined below:

p—Jj+1

Cj=(n—p)[1 + n—

:] (] =12., p)3 (32)
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T, = < Zr: x,-) + (n — r)x,. (3.4)

i=p+1

The expression at (3.1) is further rewritten as

2 S; —1py-1
l(e’ V) o (n _ p)p{Z J»p }G—re—o [v=10p+Tpl

j=o (n — pyv’
0O<f<x, 0<v<l, (3.5)

+1
where Sy , =1, 8, , = p(_pz__), and for j = 2,..,p, S; s the sum of
all possible products of j distinct natural numbers from the set £
={1,2,3,..,p}. Clearly, for j = 1,2,..,p, S; , can easily be computed as

the sum of p terms, each term being a product of j distinct numbers
J
from the set 2. It is this LF at (3.5), that is to be combined by using the

Bayes theorem, with the joint prior density of (6, v), which can be
written, under the assumptions stated earlier, as follows:

g(0,v) oc vPO~ P e (0 < ) < 00, 0 < v < 1) (3.6)

From (3.5) and (3.6), we obtain the Bayesian joint posterior density of
6, v) as

h(0,
g*(B,v)=—m(——2— 0<0<ow, 0<v<l) 3.7)
J 1(0) d6
0
where
1
I1(0) = j h6,v)dv (0 <6 < o0), (3.8)
0
and
WO =(n—pP 3 LT g, (0.) (39)
V) = (n — - ¢ [(0,v), .
P j=0 (n—py Ik
where
¢j k(g, V) = y~brhg-tr+p+ l)e—()“[u+v“10,,+7‘p]' (310)

Here both the functions h(0, v) and ¢; (0, v) are defined over the region
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{(0,v):0 < 0 < o0, 0 < v < 1}. From (3.7), the marginal posterior den-
sity of 0 is obtained as

19)
j " 16)do

0

g*0) = 0 < 0 < ). (3.11)

Now if we write
Jy= J #160)d6 (s =0,1,2),
0

then the Bayes estimator of 6 obtained from (3.11), under the assump-
tion of the squared error loss function, is given by

J
6 ==L 3.12
T (3.12)
We now evaluate
10) = (n — p)y i L @7 «(0) (3.13)
Som—py "
where
1
dF(0) = j ¢;.0,v)dv (0 <6 < o). (3.14)
0
It can be easily seen that
PEA0) = (0,)"C+ D= +p=b=1420g=0 us Ty,
0
F(b +j—1, j’), (3.15)
where
(e, y) = J e 't*" 1 (y>0) (3.16)
y

is the incomplete gamma function defined in Erdélyi, et al. (1953b, p.
133, formula 2). It may be pertinent to mention here that for y > 0, we
do not need the usual restriction o > 0, required for the convergence of
the complete gamma integral.
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From (3.13), we can evaluate for s = 0, 1, 2, the integrals

J, = J T 10 do=(n—pp ¥ kg (3.17)

0 j=0 ("—P)j e
where
[0
= (Op)_(b+j_1) fw 0_"+""’_"_S+2’e“’_’[“+TP]-F(b +j—1, %) do,
0 (3.18)

on using (3.15). The last integral can be evaluated by using the Laplace
transform (cf. Erdélyi, et al., 1953b, p. 138, formula 8) of the incomplete
gamma function given below:

© T + p) S
St p—1 _ i . .
L e S\, t) dt = 50T S5 2F1[1,a BB+ L S], (3.19)

provided that the following conditions
1
Ref>0 , Re(@+pB)>0 , ReS>—§ (3.20)

hold, where ,F,[.,.;.;.] denotes the Gauss hypergeometric function (cf.
Erdélyi, et al., 1953a; Slater, 1960). The conditions stated by the equa-
tion (3.20) hold good for all the integrals evaluated in this paper by
using the Laplace integral (3.19), if we assume r + p > p + 2, that is, if
r = p + 2. Now from (3.18) and (3.19), we obtain:

6 I'r+p—y9) .
P r+p—b—j—s+)u+0,+ Ty
JFiLr+p—s5r+p—b—j—s5+2; 2], (3.21)
where
T,
) (3.22)

L
p+0,+ T,
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Hence, from (3.17), we get for s = 0, 1, 2, the following expression:

(mn—pyT(r+p—s) &2 Sj,p

S (UHO,+ Tyt ,;o (n—pyG+p—b—j—s+1)

i Lr+p—s5r+p—b—j—s+2;z]. (3.23)

Hence, the Bayes estimator  of the mean life can be obtained from
(3.12), and the variance V of the posterior distribution (3.11) can be

obtained as
J 2
v=(22) - (LY, (3.24)
Jo Jo

4. BAYESIAN REALIBILITY ESTIMATION

The reliability function for the exponential failure model (2.2) corres-
ponding to a prescribed “mission time” t(>0) is given by

R=Ryt)=e """ 4.1)

The estimation of this function is of considerable interest in the literatu-
re on reliability analysis (see e.g. Bhattacharya, 1967). Under the as-
sumption of the squared error loss function, the Bayes estimator of
reliability is simply the posterior expectation of (4.1) with respect to the
density g*(0) given by (3.11). Hence, the Bayes estimator R of the
reliability function is given by

r e *"'1(0) do
° - 4.2)

r 1(6) o

0

The numerator N of the above expression can be worked out by using
the Laplace integral (3.19) as in the last section. Thus, we obtain:
__(m=pTrtp) ¢ _ Sip ,
Ww+0,+T,+ty™ Somn—pYr+p—b—j+1)

Killr+pr+p—b—j+2 7], (4.3)
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where

. u+ T+t
Cp+ 0, + T+t

7

(4.4)

Since the denominator of (4.2) is simply J, which has already been
evaluated, the Bayes estimator R can be computed. To compute the
variance V* of the posterior distribution of reliability, we shall need the
following ratio of the integrals:

[ee]

. J e 297 [(0) db
J R2g*(0)do = <2 . {4.5)

0 J ’ 1(6)do

0

The numerator N’ in the last expression is again worked out by using
(3.19). Thus, we obtain:

(n—pyr(r+p) & S p

)

T WA O, AT, 20 S —pprtp—b—j+ 1)

!

i, r+psr+p—b—j+2 2", (4.6)
where

_ u+ T, +2
p+0,+ T,+ 2t

"

4.7)

Hence, the expression (4.5) can be computed, from which we have to
subtract (R)? in order to obtain the variance V*.
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