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SUMMARY

Adopting a measure of dispersion proposed by Alamo [1964], and exten-
ding the analysis in Stangenhaus [1977] and Stangenhaus and David [1978b],
an analogue of the classical Cramér-Rao lower bound for median-unbiased
estimators is developed for absolutely continuous distributions with a single
parameter, in which mean-unbiasedness, the Fisher information, and the
variance are replaced by median-unbiasedness, the first absolute moment of the
sample score, and the reciprocal of twice the median-unbiased estimator’s
density height evaluated at its median point. We exhibit location-parameter
and scale-parameter families for which there exist median-unbiased estimators
meeting the bound. We also give an analogue of the Chapman-Robbins
inequality which is free from regularity conditions.
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1. INTRODUCTION

Let u be the Lebesgue measure on Euclidean n-space E". Let # =
{P,:0€®} be the family of distribution functions which is absolutely
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continuous with respect to u and depends upon a single parameter 0,
where the parameter space ® is either the real line, or an interval on the
real line. It is assumed that for every e ®, f(x;0) is a continuous
density function of P, with respect to u, where x e E".

Let X = (X,,X,,..,X,) be a random vector of n iid random varia-
bles having a joint density function f(x;6). Let t(f) be a real-valued
differentiable function on ®. An estimator d(X) of t(0) is called median-
unbiased if

median, 6(X) = t©(f) for all HeO. (1)

The usual unbiasedness will be called mean-unbiasedness to avoid
ambiguity in the present discussion. For any estimator with absolutely
continuous distribution, the condition (1) of median-unbiasedness redu-
ces to

Po[8(X) < ©(0)] = Po[8(X) = 1(0)] = 1/2 for all 0e®.

Let Y = 6(X) be any median-unbiased estimator of t(6). Let g4(y; 6)
be a known continuous density function of Y.

An analogue of the Cramér-Rao lower bound for median-unbiased
estimators was first proposed by Alamo [1964]. Since Eyl6(X) — u| is
minimized when u is a median of §(X), Alamo postulated the mean
absolute deviation as the measure of dispersion associated with median-
unbiased estimators. Searching for a lower bound for the mean absolute
deviation of median-unbiased estimators, Alamo found that such a
lower bound is unobtainable independently of the estimator J(X).
Alamo proposed then as a new measure of dispersion associated with
median-unbiased estimators the reciprocal of the squared density height
of the median-unbiased estimator evaluated at its median 7(f), and
developed an analogue of the Cramér-Rao lower bound for median-
unbiased estimators, based on the expected squared sample score which
also underlies the Cramér-Rao inequality. Alamo obtained, under cer-
tain regularity conditions,

1/{gs(x(0); 0)}* > 4['(0)1*/1,(0), )
or equivalently,
1/2g5(x(0); 0) = [7'(0)/</15(0), ©)
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where I,(6) is the usual Fisher information function:

1,(6) = E,[(6/00) log f(x; 6)]*.

Though (2) is the original form of Alamo’s inequality and the left-
hand side of (2) was asserted as a measure of dispersion for median-
unbiased estimators, we slightly change the form of the inequality to (3)
to conform to the rest of this paper. Since it is desirable, in general, to
have an estimator of which the density is concentrated around the
parametric function of interest, it is not surprising that 1/2g(z(8); 0) can
be considered as a measure of dispersion.

The class of estimators that attains the lower bound, however, seems
to be very restricted. An example where the lower bound is achieved, as
was shown by Alamo, is that of estimating the location parameter from
a double exponential distribution with a single observation.

A sharper lower bound than that of Alamo was proposed by
Stangenhaus [1977], and Stangenhaus and David [1978a], in developing
a lower bound for an estimator & which minimizes E,6(X) — (0)",
where y > 1. Using the fact that as y | 1, an estimator which minimizes
Ey|6(X) — t(0)]” becomes a median-unbiased estimator, Stangenhaus
proposed an analogue of the Cramér-Rao inequality based on the
expected absolute sample score under considerably restrictive regularity
conditions:

1/295(t(60); 0) = |'(0)I/1,(0), (4)
where I, is an analogue of Fisher information:
1,(0) = E4l(0/00) log f(x; O)].

Stangenhaus and David [1978b] rederived this inequality using a
direct approach not involving the y-limiting procedure under relaxed
regularity conditions only for the case of 7(f) = 6 when the density of a
median-unbiased estimator is defined over the entire real line:

1/2g,(6; 0) = 1/1,(6).

They also identified bound-achieving median-unbiased estimators for
symmetric continuous density functions defined over the entire real line
which belong to a location family.

In this paper we extend these considerations to the treatment of
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arbitrary parametric function () of 6 and give location-scale parameter
families for which there exist median-unbiased estimators meeting the
lower bound without assuming the symmetry condition.

It might be observed that the asymptotic standard deviation of the
sample median from a density with 0 as its location parameter is
proportional to the reciprocal of the density height evaluated at 6, and
the translated sample median can be taken as a median-unbiased
estimator of the location parameter. Obviously, the asymptotic standard
deviation of such a translated sample median is again proportional to
the reciprocal of the density height at # and the reciprocal of the density
height of the translated sample median at 6 is also proportional to the
asymptotic standard deviation. This result sways us to the possibility of
using estimator’s density height as a natural measure of dispersion for
median-unbiased estimators.

We call the common left-hand side term in (3) and (4) difussivity.
Diffusivity is different from the conventional measure of dispersion in
that it measures vertical spread of a density rather than horizontal
spread.

2. LOWER BOUND

We first derive an analogue of the Chapman-Robbins inequality
[1951] which is free from regularity conditions. Let Af be positive such
that both 6 and 0 + A0 belong to ®. By the definition of the median-
unbiased estimator, the followings hold:

rt(8) (6 + AG)
gs(y; 0)dy = J gs(y; 0 + ABYdy = 1/2 for all 6e®, (5)

N, —

and

r+ o + o

gs(y; 0)dy = J gs(v; 0 + AB)dy = 1/2 for all 6e®, (6)

(6 + A0)

J1(6)

when 6 and 0 + A0 belong to ©.
Consider Py, ,0[7(0) < Y < (0 + A6)]. We write this probability as
follows, using (5):

(0 +A0)
J 9gs(y; 0) + AO)dy

(0)
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rT(6 + AB) ()

= gs(y; 0 + AO)dy — J gs(y; 0 + AO)dy

- - x
re(0) (0)

= gs(y; 0)dy — J gs(v; 0 + AO)dy

-x —x
r\

B {f(x;0) — f(x;0 + AD)}u(dx). (7
J 800 < (0]

An analogous argument for [x:d(x) > 7(6)], using (6), leads to

(60 + AB)
J gs(y; 0 + Af)dy

(6)

= J {f(x; 0 + AO) — f(x; )} u(dx). (@)
[x:d(x) > ©(0)]

Note that by the mean value theorem the commont left-hand side
term of (7) and (8) can be written as

(60 + A0)
J gs(y; 0 + AO)dy

(0)
= [1(0 + AO) — ©(0)]gs(t(0) + A(z(0 + AO) — (0)); 0 + AD), 9)

for some 2 such that 0 < A < 1.

After replacing the left-hand sides of (7) and (8) by (9), we divide
them by A0, take absolute values to both sides of (7) and (8), and add
the resulting two equalities to obtain

(0 + AB) — (0)|
Af |

;0 + AO) — ;0
< if(X, + AO) flx )I,“(dx) (10)

2

gs(t(0) + A(t(6 + AB) — (0)); 0 + A0)

(10) can be shown to be valid for negative A0 such that 6 + Afe®.
Since we assumed that g; is continuous and () is its median, we
conclude by taking the limit infimum as A6 — 0 in (10)

| £ (x5 0 + Af) — f(x; 0)|

2|7'(0)lgs(x(6); 0) < lim inf |f (o; O)pu(dx).

AO—0 | AOf(x, 0)

Hence we proved the following theorem.
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Theorem 1. Let 7(6) be a real valued differentiable function on ©.
Let 4(X) be a median-unbiased estimator having a continuous density
g5 Then

L [*(6) ay
20,050~ . (S 0+A0)—f(x6) ’
llgﬁl(r)lf A0S (. 0) | f(x; Ou(dx)

where the limit infimum is taken over all A8 # 0.

Example 1. Let X, X,,.., X, be iid random variables from the
uniform distribution with marginal density

1 for 0—-1/2<x<60+1/2,
f(x;0) = .
0 otherwise.

Let 6(X) be the sample mid-range. Then the density function of § is
given by

n(l1—=2y—0)"~' for 6—-12<y<0+1/2,
gs(y; 0) = .
0 otherwise.

Therefore 6 is median-unbiased for 6, and 1/2g,(6; 0) = 1/2n. If we write
the integrand in Theorem 1 as |A0] ™| f(x; 0 + AO) — f(x;0)|, then the
integral is nothing but the content of the symmetric difference of two
unit n-cubes displaced with respect to each other by an amount \/EA()
along the equiangular line. This content is 2nAf to order A6, so that the
sample mid-range achieves the lower bound. []

It is possible that the denominator of the right hand side of (11) is oo
for any A@. In this case, (11) is still a valid, though trivial, inequality.

We now impose the following regularity conditions and present an
analogue of the Cramér-Rao inequality.

1) O is either the real line, or an interval on the real line.
i) (0/00)f(x; 0) exists for every 0 e ®. (12)
i) 0 < Ey|(8/00)log f(x;0)] < oo for every e ®.

Theorem 2. Let 7(f) be a real valued differentiable function on ©®.
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Let §(X) be a median-unbiased estimator having a continuous density
gs- Then, under the regularity conditions (12),

1/(295(2(6); 0)) = |7'(0)/1,(0). (13)

Proof: By ii) and iii) in (12), the denominator of the right hand side
in (11) is bounded below by [((6/06)log f(x; 0)|f(x; 6) u(dx), which is
1,0). O

Example 2. Let X, X5, .., X, be a sample of n independent obser-
vations from N(u, 62), where o2 is known. The sample mean X is
median-unbiased for u since X ~ N(u, 6%/n). Therefore, the diffusivity of
X is 6./n/2n. Since T = (0/ou)log f(X; ) = Z(X; — p)/o* ~ N(O, n/c?),
then I,(u) = E,|T| = \/2n/nc*. Hence, the sample mean attains the
lower bound. Let M be the sample median. Asymptotically M
~ N(u, 1/(4nf?(u))). Hence M is median-unbiased for y, and the diffusi-
vity of M is na/2ﬁ, which is greater than 1/I,(u). Therefore the sample
median is less efficient than the sample mean in the normal distribution.
If we define the asymptotic relative efficiency between two median-
unbiased estimators J,(X) and d,(X) of () to be the limit of the ratio
95,(1(0))/g5,(t(0)) as n — oo, then the asymptotic relative efficiency of X
to M in the normal distribution has the value of \/71/—2 = 1.2533. Note
that we obtain the same value in mean-unbiased estimation, where the
measure of relative efficiency is the ratio of the standard deviations. [

Example 3. Let X, X,,.., X, be iid N(u, 6%) random variables, where u
is known. Though it is hardly conceivable to know the exact value of u
in practice, let’s consider median-unbiased estimation of o2 given the

value of u. Let §? = Z (X; — w)* Since S?/o? ~ y2Z, S?/y% 5 is median-

unbiased for o2 where xZ s denotes the median of the chi-square
distribution with u degrees of freedom. Let Q = S?/y7 5. The density
function of Q is given by

)l s < 2 Bsa
9dold o222 T (i) \ & eXP = 5T 3
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Therefore the denominator of diffusivity is given by

2 2 n/2 2
ng(O'Z) _ (Xn, .5) Xp {_ /(n, .5},

= o222 (n)2) 2

of which the value can be obtained easily from the table of the chi-
square distribution. The expectation of the partial derivative of the joint
likelihood f with respct to ¢? is given by

Egaéz.ngi _ E| 1 {Zi(xi — ) _ n}\

2q? o?

1
=—Ely? —n,
552 Elin = 1l
since X, (X; — u)®/o® ~ x2. This expectation can be evaluated approxi-
mately by use of Monte Carlo integration technique. The following
table shows a summary of the computation for some vales of n.

n s 20%ee) Bt o
do

1 455 0.43 047 1.11

2 1.39 0.69 0.75 1.08

3 2.37 0.89 0.94 1.05

4 3.36 1.05 1.09 1.04

5 4.35 1.19 1.22 1.03

The median-unbiased estimator S$%/y? s does not attain the lower
bound. It can be easily shown that is attains the bound asymptotically.
When n = 10, the ratio turns out to be 1.002 approximately. []

3. OPTIMALITY CONDITIONS FOR LOCATION
AND SCALE PARAMETERS

Assume that the regularity conditions (12) are satisfied by the family
of distribution functions {F,s;0€®}, ® — R. We say that a median-
unbiased estimator & for 7(0) is optimal for the family {Fg e ®} if 6
attains the lower bound.
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The equality in Theorem 2 holds if and only if

l J [(¢/06) 1og f(x; 0)]f(x; ) u(dx)
[x:d(x) < 1(0)]

= J (6/06) log f(x; 0)|.f (x; O)u(dx) (14)
[x:6(x) < =(0)]

and

| J [(6/06)1og f(x; O)]f (x; ) u(dx)
[x:d(x) > 1(0)]

= J (0/00) log f(x; 0)| f (x; O)pu(dx) (15)
[x: 8(x) > 7(0)]

or equivalently, if and only if the function log f(x; 0) is monotone in 0
on [x:d(x) < 1(#)], and the same holds as well on [x:d(x) > t(6)].

In general, finding such a family of distributions which satisfies the
condition (14) and (15) seems to be not trivial. We now show a condi-
tion under which we can find an optimal median-unbiased estimator of
a location parameter.

Theorem 3. Let X = (X,,..,X,) be a sample of n iid random
variables from a density of the form f(x,;6) = cexp h(x, — 0), where ¢
is a constant, and h is strictly concave. Assume that the regularity
conditions (12) are satisfied. If we take a median-unbiased estimator
6(X) of 6 such that X7_, #'(X; — 6(X)) = 0, then such a median-unbiased
estimator ¢ attains the lower bound and is the maximum-likelihood
estimator of 6. Conversely, if a median-unbiased estimator 6 of 6 attains
the lower bound, then X}_, h'(X; — §(X)) = O holds. Moreover, if p is a
strictly monotone transformation, the p(d) is also an optimal median-
unbiased estimator of p(6).

Proof: Strict concavity of h implies that (0/06)log f(X;6) =
—X'_ | K(X; — 0) is strictly decreasing in 0. Since J(X) satisfies
i W(X; — d(X)) = 0, then 8(X) = 0 for [x:(0/00) log f(x;6) = 0], and
0(X) < 6 for [x:(0/00)log f(x;60) < 0]; ie., ¢ satisfies (14) and (15).
Obviously, é is the maximum-likelihood estimator of 6. Conversely, if 6
satisfies (14) and (15), then ZXI_, h(X;,— (X)) is zero since
(0/00)log f(X; 0) is strictly decreasing in 6. The last part follows from
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the fact that when ¢ is median-unbiased for 6, p(d) is also median-
unbiased for p() for a strictly monotone transformation p. [J

As was mentioned in Section 1, Stangenhaus and David [1978b]
showed the sufficient condition in the first part of Theorem 3 with an
additional assumption of symmetric h and verified that 6 is the maxi-
mum-likelihood estimator of 6.

- Example 4. For N(u,1),h(X, — p) = —(X, — w?/2, which is
strictly concave. £ h'(X; — u) = 0 if and only if Z (X; — u) = 0. Hence if
we take 6(X) = X, then X is a median-unbiased estimator of yu and
achieves the lower bound as was shown in Example 2. Note that X + d,
where d is a constant, is median-unbiased for 8 + d and attains its lower
bound since X and X + d are one-to-one. []

Example 5. Let X, X,, ..., X, be a sample of n independent obser-
vations from a double exponential distribution: f(x,;6) = (1/2) exp
(—Jx; — 0]). Assume n = 2k + 1, where k is a positive integer. —|x; — 0|
is strictly concave. (8/06)log f(x; 0)=(# of xis = 0)—(# of xis<0)=d.
If we take the sample median M as a median-unbiased estimator of 6,
which makes d to be 0, then M achieves the lower bound. []

Example 6. Let X be a random variable with a density of the form
f(x;0) = (1/2) exp h(x — 6), with h defined by

—(x —0)’n/4 if x=0
—|x — 6 if x<8@.

h(x—0)={

Since 6 is the median of f, X itself can be taken as a median-unbiased
estimator of 6. Though f is not symmetric, X attains the bound. []

In Theorem 3, we have shown that there exists an optimal median-
unbiased estimator of the location parameter, assuming that the scale
parameter is known. We now consider a certain one-to-one transforma-
tion of such an optimal median-unbiased estimator to determine an
optimal median-unbiased estimator of the scale parameter. Note that a
scale problem can be converted to a location problem.
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Theorem 4. let Z =(Z,,Z,,..,Z,) be a random sample of size n
from a scale density of the form

1
fzy;0) = “k<i>, zy > 0.
g \o

Let X;=logZ,i=1,.,n If X =(X,,.., X,) satisfies the assumptions
of Theorem 3, then exp {d(log Z,, ..., log Z,)} is an optimal median-
unbiases estimator of ¢ and is also the maximum-likelihood estimator
of o.

Proof: By assumption, (X, ..., X,) is an optimal median-unbiased
estimator of logo. Since the exponential function is a one-to-one
transformation and median-unbiasedness is invariant under one-to-one
transformations, exp {d(log Z, ..., log Z,)} is also an optimal median-
unbiased estimator of ¢. It is the maximum-likelihood estimtor of ¢ by
the invariance property of maximum-likelihood estimation since
ologZ,,..,log Z,) is the maximume-likelihood estimator of logo by
Theorem 3. []

Example 7. Let Z = (Z,,Z,,..,Z,) be a random sample of size n
from a continuous density

1
f(zy;0) = meXp{*ilog((zl — 0)/o)l}, z, >0,

where 0 is known. Assume that n =2k + 1, k =0,1,... Let M be the
sample median of Z,,Z,, .., Z,. Then M is an optimal median-unbiased
estimator of 0. [

Example 8. Let Z =(Z,,Z,,..,Z,) be a random sample of size n
from a continuous density

f(zy;0) = N (z,——() exp { —[log((zy — 0)/0)1?/2}, z, >0,

where 6 is known. Then (17, Z,)!" is an optimal median-unbiased
estimator of a. [
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