ON RANDOMIZED STOPPING TIMES

C. ARENAS
Dept. d'Estadística
Facultat de Biologia
Universitat de Barcelona

ABSTRACT

In this note we give a proof of the fact that the extremal elements of the set of randomized stopping times are exactly the stopping times.

Key words: randomized stopping times; stopping times; extremal elements. Classification AMS: 60G40, 60G57.

RESUMEN

En esta nota damos una demostración del hecho de que los elementos extremales del conjunto de los tiempos de paro aleatorizados son los tiempos de paro.

Palabras clave: tiempos de paro aleatorizados; tiempos de paro; elementos extremales.

Clasificación AMS: 60G40, 60G57.

1. INTRODUCTION

We know (cf. Edgar, Millet, Sucheston (1981); Ghoussoub (1982)) that the extremal elements of the set of randomized stopping times are the stopping times and this is relevant in the context of the optimal

Recibido: Enero 1989. Revisado: Julio 1990. stopping problem (see Dalang (1984)). The aim of this note is to give an alternative proof of this fact. To this end, we give a new characterization of the extremal elements of the set of randomized stopping times, by using the notion of optimal projection for processes with indexes in $\mathbf{R}_+ \cup \{\infty\}$ (see section 2).

2. NOTATIONS. OPTIONAL PROJECTION

The following notation will be used throughout the note. $K = \mathbf{R}_+ \cup \{\infty\}$ is the one-point compactification of the set of nonnegative real numbers and \mathbf{B} is the σ -algebra of Borel subsets of \mathbf{K} .

Let $(\Omega, \mathbf{A}, \mathbf{P})$ be a complete probability space and let $\mathbf{F} = {\mathbf{F}_z, z \in \mathbf{K}}$ be an increasing right continuous family of sub- σ -algebras of \mathbf{A} , such that $\mathbf{F}_{\infty} = \mathbf{V}_z \mathbf{F}_z$ and \mathbf{F}_0 containst the null sets.

A stopping time τ is a map from Ω to **K** such that, for every t, the set $\{\tau \leq t\}$ belongs to \mathbf{F}_t .

The set of randomized stopping times was introduced by Baxter, Chacon (1977). A randomized random time μ is a probability measure on $\Omega \times \mathbf{K}$, such that its projection on Ω is **P** (see Baxter and Chacon (1977); Edgar, Millet and Sucheston (1981)).

To each randomized random time μ there is associated (see Ghoussoub (1982)) a non decreasing, null on the origin, right-continuous process A, such taht $A_{\infty} \equiv 1$, i.e. $d\mu = dP \times A(\omega, dz)$. If this process is adapted, we say that μ is a randomized stopping time.

For every $\mu \in \Gamma$, Γ is the set of randomized stopping times, and for all measurable processes X, we shall write

$$\langle X, \mu \rangle = \int_{\Omega \times \mathbf{K}} X \, d\mu = E \left(\int_{\mathbf{K}} X_t \, dA_t \right)$$

where A is the process associated to μ .

In order to give a characterization of the extremal elements of Γ we need the notion of optimal projection for process with indices in K.

Let O the optional σ -algebra on $\Omega \times \mathbf{R}_+$ and let P the optional projection operator on $\Omega \times \mathbf{R}_+$ (for the definition see Dellacherie, Meyer (1980)). We extend these notions on $\Omega \times \mathbf{K}$, by the following.

Definition 1

The σ -algebra $\widehat{O} = O \vee \sigma \{A \times \{\infty\}, A \in F_{\infty}\}$ is the optional σ -algebra on $\Omega \times \mathbf{K}$; and the operator \widehat{P} defined by $(\widehat{P}(X))_t = (P(X))_t$ if $t \in \mathbf{R}_+$, and by $(\widehat{P}(X))_{\infty} = E(X_{\infty} | F_{\infty})$, for each measurable bounded process X, is the optional projection operator.

Moreover, a random measure μ on $\Omega \times K$ is optional if and only if its nondecreasing associated process is optional on $\Omega \times K$.

We can prove, as in the $\Omega \times \mathbf{R}_+$ case, that if X is a bounded process, $\widehat{P}(X)$ is the only bounded, optional process Y such that, for all stopping times τ , $E(Y_{\tau}) = E(X_{\tau})$. Moreover, the σ -algebra \widehat{O} is generated by the adapted, right-continuous processes, and a random measure μ on $\Omega \times \mathbf{K}$ is optional if and only if, for all bounded processes X,

$$\langle X, \mu \rangle = \langle \hat{P}(X), \mu \rangle$$

3. EXTREME ELEMENTS OF THE SET OF RANDOMIZED STOPPING TIMES

Theorem 2

Let μ an element of Γ and let A be its associated nondecreasing process. Then, the following conditions are equivalent

- (i) μ is an extremal element of Γ .
- (ii) If g is an optional bounded function from $\Omega \times \mathbf{K}$ to \mathbf{R} , such that for every $F \in \mathbf{A}$, $\int_{F \times K} g \, d\mu = 0$, then $g = 0 \, \mu a.s.$
- (iii) There exists a stopping time τ such that

$$A(\omega,[0,t]) = I_{[\tau,\infty]}(t)$$
, for all $(\omega,t) \in \Omega \times K$

Proof

It is obvious that (iii) implies (i). To check (i) implies (ii) let g be an optional function from $\Omega \times \mathbf{K}$ to \mathbf{R} , such that $|g| \le k$ and for all $F \in \mathbf{A}$, $\int_{F \times \mathbf{K}} g \, d\mu = 0.$

Define,

$$d\mu_1 = \left(1 + \frac{g}{2k}\right)d\mu$$
 and $d\mu_2 = \left(1 - \frac{g}{2k}\right)d\mu$

This measures verifie, for all

$$F \in \mathbf{A}, \ \langle F, \mu_i \rangle = \langle F, \mu \rangle + \langle F \frac{g}{2k}, \mu \rangle = \langle F, \mu \rangle = \mathbf{P}(F)$$

and if X is a bounded process,

$$\langle X, \mu_i \rangle = \langle X, \mu \rangle + \langle X \frac{g}{2k}, \mu \rangle$$

bearing in mind that μ and g are optional

$$\langle X, \mu_i \rangle = \langle \hat{P}(X), \mu \rangle + \langle \hat{P}(X) \frac{g}{2k}, \mu \rangle = \langle \hat{P}(X), \mu_i \rangle$$

so this measures belong to Γ and $\mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$.

To prove (ii) implies (iii), define for all $(\omega, t) \in \Omega \times K$,

$$g(\omega, t) = A(\omega, [0, t]) + A(\omega, [0, t]) - 1$$

Then g is optional, bounded and satisfies for all $F \in A$, $\int_{F \times K} g \, d\mu = 0$ (see Dellacherie, Meyer (1980), pp. 6/90). Hence, g = 0 $\mu - a.s.$ This implies that, $\omega - a.s.$

$$A(\omega, [0, t]) + A(\omega, [0, t]) - 1 = 0, A(\omega, \cdot) - a.s.$$
 (1)

As the process A is increasing, it holds $\omega - a.s.$ that there exists a point t_{ω} such that $A(\omega, t_{\omega}) = 1$. So $\omega - a.s.$ $A(\omega, dt)$ is a Dirac measure. Then $A_t = I_{[\tau, \infty]}(t)$ where $\tau(\omega) = t_{\omega}$ and as A is adapted, τ is a stopping time.

REFERENCES

BAXTER, J. R., and CHACON, R. V. (1977): «Compactness of Stopping times», Z. Wahrs. verw. Gebiete, 40, 169-181.

- DALANG, R. C. (1984): «Sur l'arrêt optimal de processus à temps multidimensionnel continu», Séminaire de Prohabilitiés XVIII. Lect. Notes in Math., 1059, 379-390.
- DELLACHERIE, C., and MEYER, P. A. (1980): «Probabilités et potentiel», chp. V-VIII, Publications de l'institut de mathématique de l'Université de Strasbourg, XVIII, Hermann-Paris.
- EDGAR, G. A.; MILLET, A., and SUCHESTON, L. (1981): «On compactness and optimality of stopping times», *Lect. Notes in Math.*, 939, 36-61.
- GHOUSSOUB, N. (1982): «An integral representation of randomized probabilities and its applications», Lect. Notes in Math., 920, 519-543.