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ABSTRACT
In this note we give a proof of the fact that the extremal elements of the set
of randomized stopping times are exactly the stopping times.
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RESUMEN

En esta nota damos una demostracion del hecho de que los elementos
extremales del conjunto de los tiempos de paro aleatorizados son los tiempos
de paro.
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1. INTRODUCTION

We know (cf. Edgar, Millet, Sucheston (1981); Ghoussoub (1982))
that the extremal elements of the set of randomized stopping times are
the stopping times and this is relevant in the context of the optimal
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stopping problem (see Dalang (1984)). The aim of this note is to give an
alternative proof of this fact. To this end, we give a new characterization
of the extremal elements of the set of randomized stopping times, by
using the notion of optimal projection for processes with indexes in
R, U {00} (see section 2).

2. NOTATIONS. OPTIONAL PROJECTION

The following notation will be used throughout the note. K
= R, U {00} is the one-point compactification of the set of nonnegative
real numbers and B is the o-algebra of Borel subsets of K.

Let (Q, A, P) be a complete probability space and let F={F,,ze K}
be an increasing right continuous family of sub-c-algebras of A, such
that F,, = V,F, and F, containst the null sets.

A stopping time 7 is a map from Q to K such that, for every t, the set
{r <t} belongs to F,.

The set of randomized stopping times was introduced by Baxter,
Chacon (1977). A randomized random time u is a probability measure
on Q x K, such that its projection on Q is P (see Baxter and Chacon
(1977); Edgar, Millet and Sucheston (1981)).

To each randomized random time u there is associated (see Ghous-
soub (1982)) a non decreasing, null on the origin, right-continuous
process A, such taht A = 1, i.e. du = dP x A(w, dz). If this process is
adapted, we say that u is a randomized stopping time.

For every pel’, I is the set of randomized stopping times, and for
all measurable processes X, we shall write

Xowy=| Xdu= E(J X,dA,)
QOxK K

where A is the process associated to pu.
In order to give a characterization of the extremal elements of I' we
need the notion of optimal projection for process with indices in K.
Let O the optional ¢-algebra on Q x R, and let P the optional
projection operator on Q x R, (for the definition see Dellacherie,
Meyer (1980)). We extend these notions on Q x K, by the following.
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Definition 1

The o-algebra O = O v 6{A4 x {®}, AeF,} is the optional o-
algebra on Q x K; and the operator P defined by (P(X)), = (P(X)), if
teR,, and by (P(X)), = E(X, |F,), for each measurable bounded
process X, is the optional projection operator.

Moreover, a random measure u on Q x K is optional if and only if
its nondecreasing associated process is optional on Q x K.

We can prove, as in the Q x R, case, that if X is a bounded process,
P(X) is the only bounded, optional process Y such that, for all stopping
times 7, E(Y,) = E(X,). Moreover, the o-algebra O is generated by the
adapted, right-continuous processes, and a random measure u on Q
x K is optional if and only if, for all bounded processes X,

X, 1y = (PX), 1>

3. EXTREME ELEMENTS OF THE SET
OF RANDOMIZED STOPPING TIMES

Theorem 2
Let u an element of I' and let A be its associated nondecreasing
process. Then, the following conditions are equivalent

(i) u is an extremal element of I
(i) If g is an optional bounded function from Q x K to R, such
that for every FeA, f gdu =0, then g =0 u — as.
FxK
(iii) There exists a stopping time t such that

A(w, [0, t]) = I, (1), for all (w,)eQ x K
Proof

It is obvious that (iii) implies (i). To check (i) implies (ii) let g be an
optional function from Q x K to R, such that |g| < k and for all F € A,

J gdu =0.
FxK



TRABAJOS DE ESTADISTICA. Vol. 5. Nam. 2, 1990

Define,

9 g
=1+ =(1-2L
dp, ( 2k>dﬂ and du, <1 2k)d,u

This measures verifie, for all
g
FeA, {F,u) =<{F,p) + <Fﬁ,u> = (F,p> = P(F)

and if X is a bounded process,

Xy = <X, 1) + <X zg—k,m

bearing in mind that y and g are optional

Xy = PO, > + <P(X)2g—k,u> = (PX), 1)

1 1
so this measures belong to I' and u = M + 5 Ha-

To prove (ii) implies (iii), define for all (w,t)eQ x K,

glw, t) = A(w,[0,t]) + A(w,[0,1) — 1

Then ¢ is optional, bounded and satisfies for all Fe A, j gdu=0
FxK
(see Dellacherie, Meyer (1980), pp. 6/90). Hence, g = 0 u — a.s.
This implies that, w — a.s.

A(w, [0,t]) + A(w,[0,1)) — 1 =0, A(w,*) — a.s. (1)

As the process A is increasing, it holds @w — a.s. that there exists a
point t,, such that A(w,t,) = 1. So v — a.s. A(w, dt) is a Dirac measure.
Then 4, = I, . t) where t(w) = t,, and as A4 is adapted, 7 is a stopping
time. M
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