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SUMMARY

A general and strong notion of equivalence of decision problems is given.
Some results and examples are given to show that this natural notion is well
adapted to the methodology of statistics.
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RESUMEN

En este trabajo se introduce una definicion de equivalencia de problemas de
decision. Los resultados y ejemplos que presentamos muestran que esta defini-
cion de equivalencia se adapta bien a la metodologia de la estadistica.

Titulo: Equivalencia de problemas de decision.
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1. INTRODUCTION

In this paper a strong notion of equivalence of statistical decision
problems is sistematically studied. The problem of comparing experi-
ments is a classical one in statistics. A definition of a experiment being
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more informative than another was given by Blackwell in 1951; this
gives in a natural way a definition of equivalence of experiments: two
experiments will be said equivalent (in this sense) if each one is more
informative than the other. A brief survey on these topics could be find
in Lehmann (1988). Our definition of equivalence is stronger enough so
that the risk sets for the two problems coincide as it is shown in
theorem 1. Furthermore, the introduced notion of equivalence constitu-
tes itself a ststistical procedure to obtain solution for a statistical
decision problem equivalent to another one of wich a solution is known,
and the optimality properties (for many and usual points of view) of this
solution are preserved by equivalence as we will show in the following.
Example 1 below illustrates the results obtained in the paper. An
interesting application of our definition in normal linear models will be
briefly exposed in Example 2. A mainly theoretical application is also
announced in Example 3.

The results will be presented in a general setting to avoid unneces-

sary duplication of proofs for discrete and continuous models. Let us
fixe the notations to be used.

A experiment is a triplet & = (Q, %, {P,/0 € ®}) where (Q, %) is a
measurable space and {P,/0 € ®} a family of probability measures on %.
Usually, the parameter space © is endowed with a o-field .#. In this case
we shall write

& = (Q,U,{Py/0 (O, 9)}) (1)
A decision problem is a triplet
2 = [¢6,(A,D), W] )

where & is a experiment, (A,D) is a measurable space (the decision
space) and W is a loss function, i.e., a nonnegative random variable (r.v.)
on (0, #) x (A, D). We shall say that & is the experiment support of 2.
An experiment or a decision problem is said to be n-dimensional (or
real, if n = 1) if Q is a Borel subset of R" and % is the Borel o-field of Q.

The solutions for a decision problem & are called strategies; we
recall that a (random) strategy for 9 is a transition probability S on Q
x D, ie.,amap S:Q x D — [0, 1] such that for every w e Q, S(w,-) is a
probability measure on D, and for every D € D, S(-, D) is a real random
variable (r.r.v.) on (2, %). A nonrandom strategy S is determined by a
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rv. s:(Q,%) - (A, D) by means of S(w,D) = g,(D) where, for €A,
gs(D) = 1 if e D, =0 otherwise.

The loss function is used as a measure of the goodness of solu-
tions for the decision problem. The mean loss of a strategy S is the
map W defined on ® x Q by Wy(0, w) = [sW(0, 6)S(w, d6) and the risk
function is defined as Ry s(0) = [qWs(0, w)Py(dw). In particular, if
S is the nonrandom strategy determined by s, we have Ry (0)
= [oW(0, s(w))Py(dw). If S, and S, are two strategies for 2, S, is said to
be preferable to S, if the risk function of S, is less or equal to the one of
S, at every point of ©.

Let (Q,%, P) be a probability space and let X : (€, %) be a r.v. We
shall denote by P* the probability law of X on %, ie, P*(B)
= P(X ~!(B)) for all Be #. We shall denote by # the Borel o-field of R
and, if A€ R, by #(A) the Borel o-field of 4; however, Z* shall means
the Borel o-field of R*. Analogous notations shall be used for R".

2. EQUIVALENCE OF DECISION PROBLEMS

Definition 1: Two decision problems

'@ = [(Q9 %, {PB/G € (®a eﬁ)})s (A’ D)s W]
and
D* = [(Q*, U*, {P* /0% € (O*, F*)}), (A*, D*), W*]
are said to be equivalent if there are three one-to-one and onto r.v.
VY:(Q U - Q*U*) , T:(0,F)-> (0% F*% and
A:(A, D) — (A%, D¥)
whose inverses are also r.v. (i.e., bimeasurable) and such that
i) Py = P}, for every 0 ®
i) W(6, ) = W*T'(0), A(d)) for every 8 e ® and every e A.
If we want to be more precise, we shall say that & and 2* are (¥, I, A)-

equivalents.

Remark: Obviously, if a decision problem is equivalent to another
one, the second is equivalent to the first, and if two decision problems
are equivalents to a third problem then they are equivalents.
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Definition 2: Two experiments
E=(QU,{P/0€ (O, #)}) and &* = (Q* U*, {P¥/0* € (OF, F¥%)})

are said to be equivalent if there exist two maps ¥ and I" as those in
definition 1 such that i) holds. Briefly, we shall say that they are (¥, I')-
equivalent.

Remark: In the case ® = ©* and I'(6) = 6 it is easy to see that this
notion of equivalence of experiments is stronger than the usual one; see,
for ex, Lehmann (1988) for this definition.

Definition 3: Let 2 and 2* be two (W, T, A)-equivalent decision
problems and let S and S* be strategies for 2 and 2%, respectively. We
shall say that this strategies are associate if

S(w, D) = $*(¥(w), A(D))

for every w and D.

Remark: It is easy to see that, if S and S* are associate strategies,
then § is nonrandom iff $* is nonrandom; in fact, if S(w, ) = &y) then
S*(*,) = &gy, Where s*(@*) = A(s(¥ ™ '(w*)).

The following theorem states the relationship between associate
strategies.

Theorem 1: Let 9, 2%, S and S* be as in definition 3; then
WELI1(6), ¥(w)) = Wy(6, w)

and
Ry, s(0) = Ry= s+(I'(0))
for every 0 and w.

Proof: For any given we Q, S(w, -) is a probability measure on D
and the probability law S(w,-)* of A is a probability measure on 2*
such that

S(e, YND*) = S(w, A~ '(D¥)) = S*(¥(w), D¥)
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for all D* € 2*. Hence S(w, ) = S*(¥(w), ). Then, if 0 ® and weQ
and if we define 6* = I'(f) and w* = ¥(w), we have
WELT(6), P(w)) = WE(O*, 0¥) = [pxW*(0*, 6*)S*(w*, do*) =

= (A WH(0*, 5%)(S(w, )N)(d5*) = [AW*(6*, A(8))S(w, db) =

= [AW*(I(0), A(9))S(w, dd) = [AW(6, 8)S(w, dd) = Wx(6, J).
Furthermore

Ry« s«(I'(0)) = Ry» s0%) = [as W§:+(0*, 0*)P§r(dw*) =

= [ WE(0*, 0*)P§(dw*) = [oW 0%, P(w))Py(dw) =
= _fQWS(G’ w)Py(dw) = Ry (0)

wich completes the proof. []

Remark: In particular, if we have two equivalent decision problems
and we know an optimun strategy for one of them (in the sense that the
risk in uniformly minimized), we also know an optimum strategy for the
other one and it can be construct from the first.

If & is an experiment as in (1), we shall denote by ", n = 1,2, ..., the
product experiment

E" = Q" U", (P10 e (O, 9))).

If 2 is a decision problem as in (2), we shall denote by 2" the product
decision problem

7" = [6",(A,D), W]
We have them the following result.
Theorem 2: If & and 2* are two decision problems (¥, T, A)-
equivalent then 2" is (P", T, A)-equivalent to 2*", n = 1,2, ..., where
YWy, ..., 0,) = (P(wy), ..., P(w,))

Proof: '¥" is a one-to-one, onto and bimeasurable map. To prove
that the distribution law of W¥" under Pj is equal to Pf,, it will b
enough to show that this is the case for the measurable rectangles in
the product o-field 4*"; but this is an easy consequence of i) in Defini-
tion 1. [
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Now, we shall consider two equivalent experiments. The following
results suggest that the statistics on one and other can be identified. The first
is an immediate consequence of the definition of equivalence.

Theorem 3: Let & and &* be two (¥, I')-equivalent experiments as in
Definition 2 and let T* a real statistic on (Q*, U*). If T= T* ¥ then

Eo(T) = Erw)(T*), 96 @

inthesensethat ifone of these integrals exists thenthe other also exists and both
coincide.

Theorem 4: Let & and &* be equivalent experiments as in Definition 2,
(Z, %) ameasurable space, T* : (Q*, U*) — (X, €)astatisticand T = T* o V.
Then T* is a sufficient (resp., complete) statistic for &* iff so is T for &.

Proof: Let 4% (resp., #*)betheo-field T~ {(€)(resp., T* ~ }(¥)). Then &
= ¥~ }(#*). Let us suppose that T* issufficient, i.e., #* is a sufficient sub-o-
field of *. We must to show that for any 4 € % thereisar.r.v.g, on(Q, %)
such that Py(4 N B) = {9 4(w)P,(dw), for all 6 € ® and all Be 4. It will be
enough to show that

ga(w) = Pe(Y(A4)| #%)(¥(w))

works since the conditional probability in the second term not depends
in fact on 0, #* being sufficient.
But, for all B in £ and all 6 in ®, we have

[sPEe(F(A) | B*)(P(@))Py(dw) =
= y\P(B)PF(o)(lP(A) | #*)(w*)Pg (dow*) =
= JwmPEo(P(A) | B*)(@0*)Pfg(dw*) =
= P{(¥(A N B) = P¥(¥(A N B)) = P,(A n B).

This shows that T is sufficient if so is T*.
The assertion relative to completeness is a consequence of theorem

3.0

Next, we give some examples.

Example 1: Let us consider the (exponential) experiment

& = (R*, 2", {Py/0 > 0})
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where
dPy(x) = 0~ Yexp(—0~'x)dx, x > 0.

The map P:xeR* - e *€]0,1[ is one-to-one onto and bimeasu-
rable, and ¥~ (y) = —logy, 0 <y < 1. The map I':0€70, + o[ » 0!
—1e]—1,+oo[ is also one-to-one onto and bimeasurable, and
L~ 46*) = (1 + 6*)~* for 6* > — 1. Now, let us also consider the experi-
ment

&* = (1011, 2(0,1]), {P}+/0* > —1})
where
dP¥(y) = (1 + 6%y dy, 0 < y < 1.
The experiment & and &* are (¥, I')-equivalents.

Now, let g:R* - R be a r.v. and let us consider the problem of
estimating g in & when we use the loss function

W(,x) = (x —g)* , xeR*, 0>0.

If we make

1 2
W*(6*, x) =<x—g<1 n 9*>> , xeR, 0% > —1

the decision problems (estimation problems, in this case) 2 =
[€,(R, %), W] and 2* = [&*,(R, #), W*] are (¥, T, A)-equivalent where
Alx) = x, xeR.

The product decision problems 2" and 2*" are also equivalent. Since

n
T(Xp X)) =071 Y X, Xy X, >0
i=1
is a complete sufficient statistic for &”, then
n
Ty Y = —n" 1Y logy, , 0<yp,.y, <1
i=1
is a complete sufficient statistic for &*".
Now, let us consider the problem of testing a hypotheses @, = R* in
& against O, = Qf. If ¢:Q — [0,1] is a level « UMP test for this

problem, then ¢* = ¢po ¥~ ! is a level « UMP test for the problem of
testing I'(®,) against I[(®,) in &*.
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Example 2: The experiment associate to a statistical inference
problem on a (normal) linear model has the form

(Rn, R, {l;ll Py of(tt1s s t) €V, 0 > 0})

where V is an s-dimensional subspace of R" with s < n and P, 4) is the
distribution law of r.r.v. N(u, ¢2).

Let C be an n x n orthogonal matrix such that its s first columns
constitutes a orthonormal basis of V' and let us consider the transforma-
tion ¥ of R" onto itself defined by W¥(x) =y, where (yy,.... V)
= (X, .., X,)C. This reduces the problem to the named canonical form;
in fact, this is an experiment equivalent to the first one in which the
work is more simple. The transformation W induces, in a natural way, a
transformation I' between the parameter spaces; namely,

Ty iy 6)EV X RY - (v, .y v,,0) e W x RT
where
W= {1 V) ERYys4y = --- = y, = 0} and (v, ..., v,)) = (g s 1)-C.

We refer to Lehmann (1983) and Lehmann (1986) for more details on
this type of problems.

Example 3: It is well known that for any complete and separable
metric space there is a one-to-one map from in onto (R, £#) that is also
bimeasurable; see, for ex., Ash (1972, p. 195). In particular, every n-
dimensional decision problem is equivalent to a real decision problem.

3. EQUIVALENCE AND SOME ASYMPTOTIC PROPERTIES

We have shown that the above notion of equivalence is well adapted
to the decision problem stated in the introduction. Next, we shall give
some results to justify that this notion of equivalence preserves also
some other usual properties of solutions of a statistical inference pro-
blem.

Theorem 5: Let & and &* be two experiments (¥, I')-equivalent,
f:®>R a rv. and T,n=1,2,.., a estimate of f. Let f*@0%)
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= f(C~Y(0%), 6*c ®O*, and Tk = T, (¥")~*. Then T, is a consistent
estimate of f iff so it T¥ of f*.
Proof: Let ¢ > 0 and 6e®. For 6* = I'(d), we have
{w* = (0. .., wF) e Q*"/|TH(w*) — f*(0%) > &} =
= ¥({0 e QYT (@) — f(O)] > ¢}).
Hence

PE({*/| TH@*) — f*(6%) > &}) = Pi{w/|T(w) — f(6)] > &})

and this finishes the proof. ]

Example 1: (continued) The statistic T{xy,...X,) =n"') x; is a
consistent estimate for 6 in &. Then T¥(y,,..,y,) = —n~ 'Y logy, is a
consistent estimate for (1 4+ 0*)~! in &*.

Let & be an experiment and let g: ® — R be measurable. For n
= 1,2,..,1et T, be an estimate of g on Q" It is said that T, is asymptoti-
cally normal if for all x in R and all 6 in ®

s(n* (T, — g(0)) < x) —> @y(x)

where @, denotes the distribution function of a r.r.v. N(0, v(d)). We shall
dy
denote this fact by n*(T, — g(0)) — N(0, v(0)), V 6.
Then, we have the following results.
Theorem 6: Let & and &* be two experiments (¥, T')-equivalent, g

a r.rv. on ©® and T, an asymptotically normal estimate of g on Q" as de-
fined above if g*(6*) = g(I'"'(0%)) and T¥ = T, (¥")"!, then n%(T,’}"

— g*(6*) R N(O, v*(0%)), 0* € O%*, where v*(6*) = v(I' ™ 1(0*)).

Prooft For xeR, 0e® and n = 1, 2,... we shall denote

Ap .0 = {0 QN (T, — g(0)) < x}
and
A¥ . o0 = {0* e Q¥ /n} (T} — g*(0%)) < x}

101



TRABAJOS DE ESTADISTICA. Vol. 5. Num. 1. 1980

Therefore A¥ , o« = WA, . o) if 0% = I'(0) and then
P§(Az . g) = Po(An.x.0)
which gives the proof. ]

From now on, the framework will be the following. & and &* will
denote (¥, I')-equivalent as above, ® and ®* are open subsets of R and
I' a one-to-one and everywhere differentiable map from ® onto ©*
whose derivative is never nulle. We shall suppose that & is dominate by
a o-finite measure 4 on % and we shall denote by p, the density of P,
and L(w, 0) = L,(0) = log ps(w). Finally, we shall consider that the
Fisher information I(f) is well defined; we shall denote by V,(w) the
derivative of L, at the point 6 and, then, I() = E,(V2). Analogous
assumptions shall be made for &*.

With obvious notations, we have the following lemma.

Lemma 1: It the preceding setting, if p is a probability

a) &* is dominated by p* = u¥ and p¥«(P(w)) = p(w) if 6* = I'(H),

where p¥(A*) = u(¥~1(4*) and p}« = dP¥+/du*.

b) Vy(w)=T"(0)V§e(¥(w) and 1(6)=(I"(0))>I1*T(0)) for all v and 0.
Proof: a) It is immediate.

b) If L*(w*, 0*)= L}«(6*)=log p¥+(w*), it happens that L(w, ) =
= L¥W¥(w, I'(0)), for all w and 6, and then, if 6* = I'(0) and w* = ¥(w),
dL¥« dL¥«

Volw) = —‘w—(r(@)) = Jo*

(0*)T7(6) = I'(0)- Vix(w™)

where V}«(w*) is the derivative of L} at the point 0*.
The rest follows easily from this. ]

A estimate T, of g: ® — R on Q" said to be asymptotically efficient if
dy
n*(T, — g(0)) — N(0, v(9)) for all 6, where v(0) = (¢'(0))>-(I()) 1. We

assume, obviously, that g is differentiable in ®. The following result
holds in the preceding framework.

Theorem 7: Let g*(0*) = g(I' " '(0*)) and T* = T, (¥")" . Then T*
is an asymptotically efficient estimates of g* if so is T, of g.
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Proof: It is shown in theorem 6 that v*(0*) = v(I"~(6*)) (here, we
use the notations used there). Hence, if T, is asymptotically efficient, it
follows from this and the previous lemma that

v¥(0%) = I(TH0*) ™ Mg (T H(6%)) =
= I¥0*) " HI(THO%) Mg (T H(0%)* =
= I%(0%) 7 1(g*T'(0%)%. O
Example 1: (again) The CLT shows that T, is asymptotically normal
N(0, 6?), for all § > 0. Since I(6) = 672, 6 > 0, T, is an asymptotically

efficient estimate of §. Hence, T} is an asymptotically efficiente estimate
of (1 + 6%~ L

4. EQUIVALENCE AND THE BAYESIAN APPROACH

The bayesian treatment of a decision problem requires the presence
of a prior distribution Q on the parameter space (®,.#). We shall call
bayesian the experiment (1) and the decision problem (2) when this is
the case. A Bayes solution for such a problem is a strategy S wich
minimizes the Bayes risk

R% s = [oRw,s(0) dQ(6).

In addition to those of Def. 1, an assumption on the prior distributions
Q and Q* must be made in order to obtain a right notion of equivalence
of two bayesian decision problems 2 and 2* or two bayesian experi-
ments & and &*; namely

i) oF = Q*.

The following result is a consequence of this and theorem 1.

Theorem 8: Let 9 and 2* be equivalent bayesian decision problems.
If S and S* are associate strategies then

0 — RO
RW.S RW*.S*

Next, we analyse the relationship between the posterior distributions.
First we fix some notations. & and &* will be (‘¥, I')-equivalent bayesian
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experiments. With obvious notations, we shall suppose that {P,/6 € @}
is dominated by a o-finite measure p on %. Then the P}« are also
dominated by u* = u¥. The report between the respectives densities is
given by the lemma in the precedent paragraph. We shall suppose that
Py(A4) is a transition probability on ® x %; then so is also P¥«(A*) on
®* x 9*. This in the case if the likelihood function L(w, 0) = py(w) is a

rr.v.on (Q x ©,% x £) as it is shown in Barra (1971). Two probability
measures § and f* are defined on % and %*, resp., by

B(4) = [oPy(A)dQ(0) and B*(A*) = [orPF+(A*) dQ*(0%).

A posterior distribution for the bayesian experiment & is (if there exist) a
transition probability n,(T) on Q x .# such that [P,(4)dQ(6)
= | m,(T)dP(w) for every Ae % and Te.#. Under the made assump
tions, it can be shown that there is always a posterior distribution for &
if ® is a Borel subset of some euclidean space (or, more generally, if
there is a one-to-one, onto and bimeasurable map from ® onto a Borel
subset of some euclidean space). One has then

Mo gy = D) e 3)

dQ " [epe(w)dQ(6)

In the precedent set up, we have the following result.

Theorem 9: Let & and &* be (Y, I')-equivalent bayesian experiments
as above. Suppose that there exists a posterior distribution n,(T), w € Q,
for &. Then

e =n, if WY()=ow*

is a posterior distribution for &* and its density with regard to Q*, wich is
given by the shattered analogous of (3), satisfy

dnd d
;5‘:’ (T(6) = -l%(e) for all o and 6.
Proof: It is easy to see that f*(W(A4)) = B(A) for all A€ %. Obvious-
ly ¥+ is a transition probability on Q* x #*. Furthermore, since Q*
= Q' and p* = B¥, we have for A¥*e#%* and T*e.s* that
[rxPie(A*) dQ*(0%) = [TP¥p(A*) dQ(0) = [rPy(A)dQO(0) =
= [4mo(T) dB(®) = [ 4% o(T*) dB(w) = [psnl(T*) dB*(*)
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where W(A) = A* and I'(T) = T*. This shows that =, is a posterior
distribution for &*. The rest follows from the definition of n*« and the
lemma 1.

Remark: The Bayes solution for the problem of estimating a r.r.v.
f on ® when we use the squared error loss is Ty(w) = j'@ f(O)r,(dO). 1t
follows from the precedent results that TH(w*) = TH¥ ™ '(w*)) is the
Bayes solution for the shattered equivalent decision problem.

Example 1: (concluded) Let us suppose the parameter space (O, .#)
considered in this example endowed with the prior distribution Q whose
density with regard to the Lebesgue measure on R* is g(6) = 672 if 6
> 1, =0 otherwise. The posterior distribution n,(x > 0) is then given by
its density with regard to Q

dn x20"te™*/0

‘) =——— , 06>0
dQ( ) l—x—e™* ~
and hence
—26—3 —xe
i@ ="9"Puy gs1

l—x—e™~*

The prior distribution Q* on ®* is the uniform distribution on ]—1, Of,
and then for 0 <y <1

(1+ 6%y % log y)? p
1—ylogy

dn}(0*) = 6* if —1 < 6* <0, =0 otherwise.

x(1 —e™™)

———Tforx > 0 and then the
l—x—e™~*

The Bayes estimate of 0 is Tg(x) =
Bayes estimate of (1 + 0*)7! is

(y —Dlogy

T%#(y) = f O0<y<l.
00 =T 1osy & 0V
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