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SUMMARY

In this paper, the Bayesian analysis of the survival data arising from a
Rayleigh model is carried out under the assumption that the clinical study
based on n patients is terminated at the d* death, for some preassigned d(0
< d < n), resulting in the survival times t; <t, < --- <t,, and (n — d) survi-
vors. For the prior knowledge about the Rayleigh parameter, the gamma
density, the inverted gamma density, and the beta density of the second kind
are respectively assumed, and for each of these prior densities, the Bayes
estimators of the mean survival time, the hazard function, and the survival
function are obtained by assuming the usual squared error loss function.
Finally, the analysis is extended to situations wherein the exact survival time is
not available for any patient but only the deaths in given time intervals are
recorded. The computations are illustrated by a numerical example.
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1. INTRODUCTION

It has been observed in some clinical studies dealing with cancer
patients that the survival pattern follows the Rayleigh or the so-called
linear hazard rate survival distribution (cf. Gross and Clark, 1975; Lee,
1980), for which the survival time X is specified by the pdf

f(x]9 =2%e " (0<x<o0; 9> 0). (1.1)

Corresponding to this death density function (DDF), the mean survival
time (MST), the hazard function (HF), and the survival function (SF) are
respectively given by

po=2"1gli2g-12, (1.2)

h=ht|9 =23, (1.3)
and

S=St|H=e* (¢t>0). (1.4)

The object of the present paper is to obtain the Bayesian estimators of
U, h, and S on the basis of the survival data recorded on n patients, each
with the DDF (1.1). Suppose these patients are followed-up in a clinical
study till d deaths occur, for some preassigned d (0 < d < n). The
survival times recorded for the d deaths are denoted by
t; <t, < - < t, Naturally the (n — d) surviving patients are lost to
follow-up and the observaiions are censored at time t,. This is someti-
mes done on account of high cost required for follow-up, or else, in
order to avoid the inordinate delay (in taking decisions) that may be
inevitable if one has to wait till all the patients included in the study die.
Tt is also assumed here that there is available some prior knowledge
about the parameter 9 of the Rayleigh model based on our past
experience with similar survival data, and that this prior knowledge can
be mathematically translated into a suitable prior density g(9) defined
on the parameter space of 9. The Bayes estimators g, A, and S are then
worked out under the assumption of the squared error loss function and
the prior densities g;, i = 1, 2, 3 respectively, specified under the follo-
wing three cases:

Case I. Beta prior density of the second kind:
b~r gt

9 = BT+ b g

(0 < 3< o0; b,p,q > 0). (1.5)
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Case II. Inverted gamma prior density:
v—1

T(v—1)

g,(9) = 9% (0< 9<o0;a>0,v>1). (1.6)

Case III. Gamma prior density:

A
T - -T
gs(9 = l-_-@sl e (0< 9< o0; 1,4 > 0). (1.7)
Finally, the situation when only the deaths are recorded and the
survival times are not available, is discussed and the Bayes estimators of
the SF corresponding to the prior densities g,(i = 1,2, 3) are derived.
The computations are illustrated by a numerical example.

2. PRELIMINARIES

On the basis of the survival times ¢t; < t, < --- < t,, and the (n — d)
survivors, the joint pdf can be written as

n! d
Sttty 3)=(n————c—i)_'[l_—[1 [l ‘9):|[S(td| P O0<t,; <+ <ty<00).
2.1
Let us define the statistic
d
TF = [Z tf:| + (n — d)t3, 2.2)
i=1

which can be referred to as the total squared survival time (TSST) in the
clinical study. Then, it follows from (1.1), (1.4) and (2.1) that the kernel of
the likelihood function (LF) for the observed survival data is given by

1[(9) oc Fe= 98 (0 < 3 < o). (2.3)

This LF will be used repeatedly in the subsequent sections as also the
following two integral representations for the confluent hypergeometric
function (., .; .) introduced by Tricomi (cf. Erdélyi, 1953a, Ch. VI) and
the modified Bessel function of the third kind K,(.) (cf. Erdélyi, 1953b,
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Ch. VII) respectively. The first formula (cf. Erdélyi, 1953a, p. 255,
formula 2) is given by

Jm yA711 + y)B A e dy = T(AWY(A, B;Z) (Red >0), (24)
0

and the second formula (cf. Gradshteyn and Ryzhik, 1965, p. 340,
formula 9) is given by

© £y £
f y*le 7 Tdy = 2<§>2Ka(2\/[7);)(Re B, Rey >0). (2.5
0

It may be mentioned here that the special functions K,(.) and y(., .; .) are
tabulated in Abramowitz and Stegun (1972). Thus, the desired numerical
computations are possible with the help of the results obtained in this
paper. We shall also need the formula

K_,(Z) = K,(2) (2.6)

in the sequel.

3. BAYESIAN ESTIMATION FOR THE CASE I

The LF (2.3) is combined with the prior density (1.5), via Bayes
theorem, to obtain the posterior density function

9p+d—1e—97‘5
[+ b 9P

where C, is a normalization constant, which can be evaluated by using
(2.4). We obtain

C,=b""Tp+dyp+dd—q+ 1;bT}). (3.2)

gt = C;! 0 <9< ), (3.1)

Hence, under the assumption of the squared error loss function, the
Bayes estimator of the MST is obtained as

p=271 f nl29712g%( 9 d9
0

B ﬁr(p +d—1/2y(p +d—1/2,d — q + 1/2; bT%)

2 bY2T(p + d) Yyp+d,d—q+ 1;bT °

(3.3)
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by using (2.4), (3.1) and (3.2). In a similar manner, the variance of the
posterior distribution of u is computed as

B n Y(p+d—1,d— g bT})
Cdbp+d—1)y(p+d d—q+1;bTH

|41 — (7. (3.4)

Now the Bayes estimator of the HF, under the assumption of the
squared error loss function, is given by

k=2t r 9g*(9) d3
0

Vp+d+1,d—q+ 2;bTY)
=2tb d) , 35
b+ D o T dd—q+ 1 bTh 8.5

by using (2.4), (3.1) and (3.2). Similarly, the variance of the posterior
distribution of h is obtained as

Yy(p+d+2,d—q+3;bTY)

Vi =4t*b*(p+d d—1) — (h)2. 3.6
A P+ p+d =1y T (h) (3.6)

The Bayes estimator of the SF is computed as

S = J e~ g9 dI
0

+d,d— 1; b[t* + T*

v a+ 1 b* + 1) 5

Yy(p+d,d—q+ 1;bTF)
The variance of the posterior distribution of the SF is given by

_Y(p+d,d—q+ 1;b[2t* + T¥])
T Ylp+d, d—gq+1;bTH

Vi - (9> (3.8)
4. BAYESIAN ESTIMATION FOR THE CASE II

The LF (2.3) is combined with the prior density (1.6) to obtain the
Bayesian posterior density

g9 = C; 1 F Ve ITi—4 (0 < 9 < w0), @.1)
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where C, is a normalization constant, which can be evaluated by using
(2.5). We obtain

¢, = 2(a/T:ik)(d—v+1)/2'Kd—v+1(2\/ aTy). (4.2)

Hence, the Bayes estimator of the MST is given by

A= 2"17z1/2Jv 91255 d 3
(0]

_ /2 <T§k>1/4 Ky y11/2(2/aTy) (4.3)
2 \a ) Kiyi@JaTH) '

by using (2.5), (4.1) and (4.2). In a similar manner, the variance of the
posterior distribution of u is computed as

K, (2/aT%¥)
V, = (n/4)[ T%/a]'/>—1 -
> = (m/4)[Ti/a] Ko . 0JaTh

In the same way, the Bayes estimator of the HF and its posterior
variance are respectively given by

R = 2t(a)TH)'? Ka-vsa(2/aTd ). (4.5)
Ky v+1(2\/aTy)

(). (4.4)

and

2 Kd——v+3(2 aT;‘) 2
, = 4%a/T}) V24 hp
Ky-y+1(2/aTy)

The Bayes estimator of the SF and its posterior variance are respectively
given by

(4.6)

. ( Ty )“"““’”K.z-vﬂ(%/a[tz+T;"]) )

S = _
Ti+ 1 Ky \v41(2/aTy)

and

2o Ki_ys12/aTy)

T* + 212
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5. BAYESIAN ESTIMATION FOR THE CASE III

The LF (2.3) is combined with the prior density (1.7) to obtain the
Bayesian posterior density

*\d+ A

959 = %w“—le—%m 0 < 9 < o). (5.1)
In this case the, the prior (1.7) and the posterior (5.1) belong to the same
family, that is, the so-called ‘closure property’ is satisfied, and this was
to be expcted because the gamma prior considered here is a natural
conjugate (cf. Raiffa and Schlaifer, 1961) for the Rayleigh density (1.1).
Hence, the derivations are quite straightforward in this case, and
therefore, the results are merely recorded. The Bayes estimators of the
MST, the HF and the SF are respectively given by

7V2Td + 2 — 1/2)

(i = T2 5.2
a wa+y ot TD -2)
2(d + At
== "7 53
(t+TH -3
and
N t2 —(d+2)
S=|14+— . 5.4
[ e T::)] >4
The posterior variance of pu, h, and S are respectively given by
_ nt+ TY) 2
4d + 2)d + A+ 1)?
Vy = — (h)? i
3 (T + T;‘)z (h) H (5 6)
and
2t2 —(d+2)
Vi=|14—— —(8)2. .
g [ oy Tj,"):| ) (57)
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6. BAYESIAN ESTIMATION OF THE SF BASED
ON DEATH RECORDS

In some clinical studies, the situation may be somewhat different in
so far as the experimenter decides to terminate the experiment after a
preassigned period of time, say T(>0), rather than at the time of the d"
death. Here the number of survivors s(0 < s < n) out of n patients
included in the study is recorded after the expiry of the period T, and
the exact survival times for the (n — s) deaths also are not available.
Thus, only the triple (n, s, T) is recorded. We shall discuss a somewhat
more general situation wherein the record of k such triples (n;, s;, T;) are
available for i = 1,2,..,k. Clearly 0 <s; <n, (i=1,2,..,k). The LF
corresponding to this sample data is given by

1*(9) = [[k] <'S’>]e~2 sT[]f[1 a- e_ST‘Z)""_S":I 0<9<ow). (6.1)

i=1 i
This LF is combined with the prior density (1.5) in Case I, to obtain the
Bayesian posterior density

Sp—le—s-_i 5, T? )
g+ = B;* m————[n (- e—”f)""-s'] (0<9<c0), (62)

where the normalization constant B, is given by

K
— 1 _ -—ST,Z n;—s; d|9
o [1 +b_1'9]p+q|:i=k( ¢ )

—1,-0 % 5T?
o e »izl
B,

[«
yP— 1o—Y Y b(ni—ji)Tiz]

) Li=1

= b? z(f[ Di>(— N —R- fo dy, (6.3)
i=1

0 1+ yyrre

which has been written by using the binomial series expansion for
1 - e"'gT"z)"-'_“"' (i=1,2,..,k), and the following notations:
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ny—si n2—S2

Y
z Z Jjk=0
(6.4)

Jj1=0 j2=0

k
N = Z ni N 7o
i=1 i=1 _
Now by using (2.4), B, is obtained from (6.3) as given below:
k k k
B, =b"T'(p) g[ﬂ Di](_l)N—R—.Zif Y(p,1—g;b 21 m—i)T?)  (6.5)
i=1 =t i=
The Bayesian estimator of the SF, under the assumption of the squared
error loss function, is given by
§= J e g*(9. (6.6)
0
This integral is computed by using the same procedure as in the

evaluation of B,. The final result is given below:

Z[i Di](—l)N ‘R‘?::,"i |//(p, l1—g; b[t2+ f (n,-~—j,-)T§J>
- - . (67

S=
Z’l:i Diil(—l)N_R_Elj" W(Pa 1—g; b, i (ni_ji)Ti2>
i=1 i=1

Similarly, for case II, the LF (6.1) is combined with the prior density

(1.6) to obtain the Bayesian posterior density

k k
g**(9=B; 19-—ve—a/9—‘9.z sin|: Z (1 _e—ST,?)ni—s,-
= i=1

where the normalization constant B, is obtained in the same manner as

] (0< 9<o0), (6.8)

above. Thus,
k k <o} a k

B, =z'[]’] Di:l(—l)N‘R‘Elj‘f 9% g i§‘<"f~ff>Tf] d9
i=1 0
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— Jj)T?

X Kv—1<2\/ai i [n; _fi]Ti2>a (6.9)
i=1

by using (2.5) and (2.6). Hence, the final result for the Bayes estimator of
the SF is obtained as

g0 e fonam) s (o 5]
§=—L-! i=1 | i=1 1/
k k ) k el X
2’[._21 Di](—l)”"“.é"(__l(n.-~j.~>T?> 2 K, (2 [a Y (n,-—ji)TJ?])
) : =l (6.10)

Finally, for case III, the Bayes estimator of the SF is recorded below:

-3 N— 1 W-Rr- i i a =12
el i+ )
.;1 (n;

k .y
Z'l:ﬁ D,-:I(—I)N—R_E‘j"<1:+t2+ i (n,-—j,-)T?)
i=1 i=1
k k k -2 ’
X [Z Di:l(_l)N_R_,.;lj(T‘f' Y (ni_ji)Ti2>
i=1 i=1

S—

(6.11)

7. NUMERICAL ILLUSTRATION

In an experiment, suppose there are 15 cancer patients for whom the
survival times follow the Rayleigh survival distribution specified by the
pdf (1.1). Suppose further that these patients are followed-up till d = 10
deaths occur. The survival times are recorded and the total squared
survival time T%* defined at (2.2) is observed as 28.7495. Under the
assumption of the squared error loss function and the beta prior,
inverted gamma prior and the gamma prior respectively for 9, the
respective posterior densities, the posterior expectation, of 3 and the
mean survival times are computed numerically and graphics are present-
ed. The details are explained in the following three cases:
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Case I: Beta prior density of the second kind:

The beta density given at (1.5) with parameters p = 4, ¢ = 1.15 and
b = 0.01 is assumed. Using expressions (3.1) and (3.2) and formula 13.5.6
(Abramowitz and Stegun, 1972), the posterior density of 3 is obtained as

gx(9) = 5.5246 x 10'8.913.(1+ 1009)~ 515~ 28.74959, (1.1)

The prior and the posterior densities are plotted in Fig. 1. Again using
the formula 13.5.6 (op. cit.), the posterior expectations for $ and the
mean survival time u are computed as 0.3078 and 1.67 respectively.

Case II: Inverted gamma prior density:

The inverted gamma density, specified by the pdf (1.6) with parame-
ters a = 0.5 and v = 4 is assumed. Using expressions (4.1) and (4.2) and
the table 9.9 (op. cit.), the posterior density of & is obtained as

g5(9) = 1.67 x 108.90.¢~(287495+0557%) (7.2)

The prior and the posterior densities are plotted in Fig. 2. The posterior
expectation of 3 is computed as 0.296. Using formula 10.2.15 (op. cit.),
the Bayes estimator of the mean survival time is worked out as 1.6359.

Case III: Gamma prior density:

The gamma density specified as (1.7) with parameters 4 = 2 and
t = 8 is considered as the prior density. Using expression (5.1), the
posterior density of 4 is (obtained as

g3(9) = 1.5021 x 1011.911.o~36.74959, (7.3)

The posterior expectation of 3 and the mean survival time are obtained
as 0.3625 and 1.60 respectively. The prior and the posterior densities of
9 are depicted in Fig. 3.

It would seem from the graphs plotted that in case I, the change in
our knowledge of $-after the prior knowledge is incorporated into the
sample evidence is the maximum. Analogous changes in  can also be
read and easily compared from the graphs.
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