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ABSTRACT

Several new multivariate negative dependence concepts such as negatively
upper orthant dependent in sequence, negatively associated in sequence, right
tail negatively decreasing in sequence, and upper (lower) negatively decreasing
in sequence through stochastic ordering are introduced. These concepts con-
form with the basic idea that if a set of random variables is split into two sets,
then one is «increasing» whenever the other is «decreasing». Our concepts are
easily verifiable and enjoy many closure properties. Applications to probability
and statistics are also considered.

1. INTRODUCCION AND SUMMARY

The concept of negatively dependent in sequence through stochastic
ordering (NDS) random variables was introduced into the statistical
literature by Block, Savits and Shaked (1985) (see also, Joag-Dev and
Proschan, 1983 and references there).

In this paper we introduce several new multivariate concepts (see
Section 2 for exact definitions). The main motivation for our definitions
is to follow the intutive requierement that if a set of negatively depen-
dent random variables is split into two subsets in some manner then one
subset will tend to be «large» when the other subset is «small» and vice
versa. In Section 2, we introduce several new types of negative depen-
dence, and develop their properties. As will be seen in Sections 3 and 4,
our conditions are often easily verifiable, they arise naturally in many
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applications and enjoy some closure properties which enable us to
derive useful inequalities for many well known distributions.

In the sequel the following two well known results, which are useful
in their own right, will be used.

Let (X, Y) be a pair of real random variables and Z be a real or
vector valued random variable. Then

Cov (X, Y) = E{Cov(X, Y| Z)} + Cov{E(X|Z), E(Y|Z)}. (1.1

Let X be a real random variable. For every pair of increasing functions

fig
Cov [f(X), g(X)] > 0. (1.2)

For f and g discordant functions, the inequality is reversed. (Two
functions are discordant if one is increasing and other is decreasing).
Inequality (1.2) is well known as Techebycheff’s inequality.

Throughout this paper, we use «increasing» in place of «nondecrea-
sing» and «decreasing» in place of «nonincreasting». Vectors in R" are
denoted by x = (x, ..., x,) and x < y means x; < y;, i = 1, .., n. Similarly
x' denotes (X, ..., X;_ 1, X;j4 15 X,) and x > y, means x; > y;, i = 1,...,n.
A real function on R" will be called increasing if it is increasing in
each variable when the other variables are held fixed.

2. NEGATIVE DEPENDENCE CONCEPTS

Definition 2.1. (Ebrahimi and Ghosh, 1981). The random variables
X4, ... X, (or the random vector X or its distribution function) are said
to be negatively upper orthant dependent (NUOD) if for every x,

P[X > x] < [] P(X; > x) (2.12)
i=1

They are said to be negatively lower orthant dependent (NLOD) if
for every x,
P[X <x] <]] PX; < x) (2.1b)

i=1

When n = 2, (2.1a) and (2.1b) are equivalent, but not when n > 3
(see, e.g., Ebrahimi and Ghosh, 1981). If both (2.1a) and (2.1b) are
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satisfied, then X,.., X, are said to be negatively orthant dependent
(NOD).

Definition 2.2. The random variables X, ..., X, are said to be
negatively upper orthant dependent in sequence (NUODS) if for every
i=1,2,..,n and every x,

P(X > x) < P(X' < x)P(X; > x,).

They are said to be negatively lower orthant dependent in sequence
(NLDOS) if for every i = 1,..,n and every x,

P(X < x) < P(X* < X)P(X,; < x)). (2.2b)

If both (2.2a) and (2.2b) are satisfied, then we say that X,..., X, are
negatively orthant dependent in sequence (NODS).

Definition 2.3. The random variables X, ..., X, are said to be
negatively associated in sequence (NAS) if

Cov [f(X), g(X)]1 <0 (23)

for every pair of increasing functions f, g defined on R"™!, R respecti-
vely, and every i = 1,..,n.

Definition 2.4 (Joao-Dev and Proschan, 1983). The random varia-
bles X, ..., X, are said to be negatively associated (NA) if for every pair
of disjoint subsets A;, A, of {1,2,..,n}

Cov {fi(X,, ie A,), (X, je A,)} <0 (2.4)

whenever f, and f, increasing.

Definition 2.5. The random variables X, ..., X, are said to be right
tail negatively decreasing in sequence (RTNDS) if

P[X' > x| X, > x;] (2.5)

is decreasing in x; for all real x', and every i = 1,..,n.
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Definition 2.6. The random variables X ,, ..., X, are said to be left
tail negatively increasing in sequence (LTNIS) if

PIX < x| X; < x;] (2.6)

is increasing in x; for all real x/, and every i = 1,..,n.

Definition 2.7 (Block, Savits and Shaked, 1985). The random varia-
bles X, .., X, are said to be negatively dependent through stochastic
ordering (NDS) if

E[f(X)]X; = x] 2.7

is decreasing in x; for all increasing functions f defined on R"~! and
every i = 1,..,n.

Definition 2.8. The random variables X, ..., X, are said to be upper

negatively decreasing in sequence through stochastic ordering (UNDSS)
if

P[X' > x| X, = x;] (2.8)

is decreasing in x; for all real vectors x/, and every i = 1,..,n.

Example (The Multinomial Distribution). Suppose that

where

Without loss of generality, it is easy to verify that
P[Xl > Ci, i= 1,...,n_ IIX" = t]
is decreasing in t, so that X,,.., X, are UNDSS.

Definition 2.9. The random variables Xy, ..., X, are said to be lower
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negatively increasing in sequence through stochastic ordering (LNISS) if
P[Xi<xi|Xi=xi] (2.9)

is increasing in x; for all real vectors x’, and every i = 1,..,n.

Example (Ranks). Let X, i =1,..,n, be a random sample from a
continuous distribution and R;, i = 1,...,n, be their ranks. Let

€SSy, SN
be m positive integers. It can be shown that

—1 Cp—m+1
PRi<cypi=1,,ml="22"".  2""

n n—1 n—m+1’
Using this it can be shown that
P[Rigci,i=1,...,mlRm+1=t]

is increasing in t, so that R,,.., R, are LNISS.

Remark 2.10. Since any of the new introduced concepts imply that
P(X;>x;, X;>x)<P(X;>x)P(X;>x;) for i<i<j<n, (2.11)

it follows, as in Lehmann (1966), that Cov (X;, X ;) < 0. This justifies the
name negative dependence for any of the introduced concepts.

When the monotonicity direction in (2.2a), (2.2b), (2.3), (2.5), (2.6) and
(2.9) are reversed, analogs of positive dependence are obtained.

3. RELATIONS

We will now derive some relations among the introduced concepts.

Theorem 3.1.

(a) NDS implies both UNDSS and LNISS,
(b) UNDSS = RTNDS = NUODS = NUOD, and
(¢) LTNDS = NLODS = NUOD.
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Proff.

(a) Obvious.

(b) The implications RTNDS = NUODS = NUOD are obvious
from the definitions. To see that UNDS = RTINDS, let

h(x;) = P[X' > x'| X; = x;]
and

g(x) = P[X' > x'| X; > x;].
Observe that

g(x) = f h(t) de.-(t)/f‘ dF y (s).

Xi

Also, g(x;) < h(x;), since h is decreasing by assumption and g is a
weighted average of h.
Next assume y; < x; and write

g = J " he) dFy (1)) J " dFy () + J "W(t) dF 5 0/ J dFy(s) >

Xi yi

> g(x) j "R/ J TP + hx) J de,,(t)/J dF(s) =
= gx). '

Thus ¢, is decreasing, and the proof is completed.
(c) The proof is similar to that of (b), with obvious modifications.

Remark 3.2. It is not hard to show that NDS = LNISS.
Theorem 3.3. NDS = NAS.
Proof. Consider the identity (1.1), and write
Cov [f(X?), g(X)] = Cov {E[f(X")| X,]- E[¢(X) | X.1} +
+ E{Cov [f(X"),g(X))| X.1}. (3.1

Suppose now that (2.6) holds. Then the expected values in the first term
on the right side of (3.1) are discordant functions in X; (almost surely) so
that in view of (1.2), this term is nonpositive. Further, the conditional
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covariance in the second term is zero, and the same holds for its
expected value.

Remark 3.4. It is obvious that NA implies NAS.
We may now summarize the above implications in the following
chains:

LNISS —» LTNIS - NLOD

NDS — NAS
NA”
UNDSS — RTNDS — NUOD

In some applications negative dependence is created when the
random variables are subjected to conditioning, as in the following
theorem.

Theorem 3.5. Let X, ..., X, be independent and suppose the condi-

tional expectation E{f(X;, i€ A)| ), X,} is increasing in ) X for every
ied ieA

increasing function f and every subset A of order one or n — 1 of

{1, ..,n}. Then the conditional distribution of X, .., X, given ) X,, is

NAS almost surely.

Proof. Let A be an arbitrary subset of order n — 1 of {1,...,n}. Let

Sl = Z Xi,Sz = X]’{j} - Z,S = Sl + S2, and fl,fz be a pair Of
ied
increasing functions. Using (1.1), where the conditioning vector is taken
as (S;,S,), it follows that
Cov {fi(X; i€ A), f,(X))|S} =
Cov {E(f1181,5,), E(f>18,,S,)1S}.

With § = §; + §,, the two terms inside the brackets on the right side

are discordant functions of S; and hence, by (1.2), the covariance is
negative.

4. PRESERVATION RESULTS AND APPLICATIONS

Closure theorems are useful for identifying negatively dependent
distributions or for constructing new negatively dependent distributions
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from known ones. In this section we introduce some closure results and
some illustrative applications.

The following definitions are needed for the statements of Result 4.1
and Result 4.2.

A bivariate function k(..) which is defined on S; x S, (where S,, S,
are subsets of R) is said to be totally positive of order 2(TP,) on S,
x S, if k(x,y) = 0 and if

k(xy, y1)k(xs, y5) = k(xy, y2)k(X2, y1)s

whenever x; < x, and y, < y,.
The function k is said to be reverse regular of order 2 (RR;) on §,
x S, if k(x,y) = 0 and if

k(xy, y)k(xs, y5) < k(xy, y2)k(x,, ¥41)

whenever x; < Xx,, y; < y, (see Karlin, 1968, p. 12).

A univariate density f is said to be a Polya frequency of order 2
(PF,) if (f(x — y) is TP, on R x R. A probability mass function is PF,
if f(x —y)is TP, on N x N where N = {.., —1,0,1,..}. A thorough
discussion of PF, density functions and many examples can be found in
Karlin (1968). Next we present two results which give rise to our
introduced concepts of negative dependence. The Dirichlet, multinomial,
multivariate hypergeometric, multivariate negative binomial and various
negatively correlated normals are example of distributions that can be
generated via such results.

The following two results are direct applications of Model 1 of
Block, Savits, and Shaked (1985).

Result 4.1. If Y,,..,Y,,, are indepdendent random variables with
PF, densities (or probability functions) then the random vector
(X4, ., X,,) which admits the representation

(X150 X) = (Y Vs la Yy + - + a0 Y =t

for some constants t and a; > 0, i = 1,..,n + 1 is (*), where (*) is one of
the following: RR, in pairs, UNDDS, RTNDS, NAS, NODS, NOD.

(X Z Y means that X and Y have the same distribution).
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Result 4.2. Let X,,.., X, be ii.d. random variables having a conti-
nuous distribution F. Let X, be the ith order satistic and

(Yl’ ceey }’") —s_-'-t (Xl’ weey X")I {X(‘) = tl’ eeey X(in) = tn}

fori<i<--<i,<nandt, <--- <t, Then (Y,,.., Y,) is (*) where (*)
is the same as in Result 4.1.
Block, Savits and Shaked (1985) have also shown that: If

st
Xy Xp)=(Y; - Y,.., Y, =Y

where Y,.., Y, are iid. random variables and Y=n""' ) Y, then

i=1
(X4, ., X,) is NDS. It follows from Theorems 3.1 and 3.2 that (X4, ..., X,)
is also UNDSS, RTNDS, NAS, NUODS and NUOD. It should be
noted that the multivariate normal distribution with negative correlatio-
ns satisfies the above representation.

Theorem 4.3. Assume that (X,,..,X,) and (Y},.., Y,) are indepen-
dent UNDSS. If all the univariate marginal densities (with respect to
Lebesgue measure), or probability functions in the discrete case, of X
and Y are PF,, then

(X, + Y,,... X, + Y,) is UNDSS.

The proof of Theorem 4.3 is easily obtained from the following
lemmas.

Lemma 44. Let X, .., X, be independent random variables with
PF, densities or probability functions. Then

(Xg o X) st X; + - + X,

Proof. See Efron (1965).

Lemma 4.5. Let X = (X,,..,X,) and Y = (Y,, .., Y,) be independent
and assume

P[Xy . Xpo1) > (S Sp—q) | X, = 5,] is | in s, 4.1)
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and
P[(Yl, ceey Yn"l) > (tl’ cesy tn—l)l Kl‘l = tn] iS l in tn. (4.2)

Further assume taht X, and Y, have PF, densities of probability
functions. Then

P[(XI + Yl""9Xn—l + Y;x—l) > (Ula"'a Un—1)|Xn + Y;l = Un]

is decreasing in U, for all U,,..,U,_,.

Proof. Clearly

P[Xl + Yl > Ul""’Xn——l + Y;'_l > Un_1|X" + )’n = Un]
E=[¢X,Y)X,+Y =U,l

where
d)(xm yn)=E[X1 + Yl > Ula'"a Xn—-l + Y;l—l > Un—l IXn = Xps Yn = yn]

However, ¢(x,, y,) is decreasing in x, and in y, because of (4.1), (4.2) and
independence. Thus, by Lemma 4.5,

E[¢(X,, V)| X, + Y, = U,]

is decreasing in U,
A straight forward generalization of RTNDS can be made by
requiring

P[X;> x;,ieC|X; > x;, jeC] 4.3)

be decreasing in x;, je C for every partition {C,C} of the index set
{1,2,..,n} and every x.

Random variables satisfying (4.3) will be called right negatively
dependent in complements (RNDC).

The following theorem gives a sufficient condition, which is easy to
check, for X to be RNDC and hence RTNDS.

Theorem 4.6. Let F(x,,..,x,) = P[X; > x;,i = 1,2,..,n] be RR, in
each pair of arguments for fixed values of the remaining arguments.
Then X is RNDC. Moreover, every permutation of X,,.., X, is
RTNDS.
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Proof. Fix i <r < n. It is enough to show that
PIX;>x,i=1,.,r|X;>x,j=r+1,.,n]

is decreasing in x,, y, .., X, for all real numbers x,, .., x,. Note that

F(xy, ... x
PIX;>x,i=1,.,r|X;>x,j=r+1,.,n]== by ) .
F(—00, . — 00, X, 4 150 Xp)

F(xg, .y X,) F(—o0, X3, ..., X,) F(— 00, .., X,y ..y X,,)
F(—00, X3, Xp) F(—00, —00, X3, ey X,)  F(—00, ey — 00, Xy 4 1500 Xp)

By the RR, property, each of the above multiplicants is desreasing in
X, 415 - X, Thus, the result follows.

Remark 4.7. It should be remarked that karlin (1968) has shown
that if the joint denity (or probability function) of X exists and is RR, in
pars, then so is F(x,, ..., X,).

An example of how Remark 4.7 might be useful is the following.

Let X4, < --- < X, be the order statistics of a sample of size n from
a population with a PF, density. Let

Y, =nXy,,
Y,=(n— 1)(X(2) — Xy

Y, = X — Xw-1y

be the normalized spacings. It can be shown that the joint density of
Y, .., Y,is RR, in pairs. Thus Y es RNDC.

The following two results are useful for constructing new negatively
dependent distribution functions from known ones.

Proposition 4.8. (a) Independent random variables are (7),
(b) if X,,..,X, are (1), then

(i) any subset of two or more of X,,..., X, is (1)

@) if g4, ..., g, are strictly increasing functions, the g,(X,), ..., g.(X,)
are (1), where () is one of the following: NODS, NAS, RTNDS,
or UNDSS.
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Proposition 4.9. If (X,,.., X,) and (Y},.., ¥,) are independent and

are (t) then (X,,..., X,, Y;,.., Y,) is (t) where (1) is the same as in
proposition 4.8.

The proofs of these propositions are straightforward and will be

omitted.
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