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RESUMEN

This pager presents a classification of statistical models using a simple
and logical framework. Some remarks are made about the historical appearan-
ce of each type of model and the practical problems that motivated them. It is
argued that the current stages of the statistical methodology for model building
have arisen in response to the needs of more sophisticated procedures for
building dynamic-explicative types of models. Some potentially important
topics for future research are included.
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1. INTRODUCCION

Anyone looking through a library of statistical books will find that
this discipline seems to be divided into many different branches that
sometimes appear to be loosely related. There are texts on data analysis
and stochastic processes, on nonparametric statistics and decision
theory, on the linear model and categorical data. But the integrated
relationship between these subjects is not easy to find. Subject classifica-
tions of statistical subjects or even the usual classification of interests to
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the members of statistical societies, are not much more helpful. Where
does the unity of statistics lie?

It has been argued (see for instance Box, Hunter and Hunter (1978))
that the unity of statistics as a science is based on the general goal of
building mathematical models for non-deterministic systems to unders-
tand them and/or to make forecasts or decisions. From this point of
view, the strength of statistics lies in providing scientists with a general
methodology to learn from reality, and to approximate sequentially
their scientific goals in a coherent and systematic way.

This paper explores the relationship between statistical models and
the methodology that has been developed to build them. First, a
classification of statistical models is presented that includes those
models which constitute the backbone of this science. Second, their
historical evolution is briefly reviewed to show that the development of
these models flows parallel to the growth of statistics as a discipline.
Third, it is argued that the appearance of a new class of models has led
to changes in methodological procedures, and the current statistical
methodology can be better understooed in this context. Finally, some
concluding remarks will be made.

2. A CLASSIFICATION OF STATISTICAL MODELS

Any sensible statistical model is built using two kinds of resources:
data and logical reasoning. The former introduces the empirical aspect
of inference and the latter the theoretical part. Assuming that the
objective of a statistical investigation is to study a (possibly vector)
random variable, y, a useful classification of statistical models can be
obtained according to two dimensions. We shall call extrapolative the
class of models that are built using only past values of the variable y,
and explicative those which also take into account the values of other
explicative variables x. In either case, logical reasoning and a priori
knowledge about the variable and the way its values are observed will
lead us to either a static or a dynamic model.

Table 1 shows a classification of statistical models according to these
two basic criteria. In all cases the model can be expressed, perhaps after
some transformation to obtain an additive decomposition, as:

VARIABLE = SYSTEMATIC VALUE + NOISE (1)
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An extrapolative-static model, here after termed a type I model, can be
characterized as follows: (1) The systematic value u is a constant and (2)
the noise has a probability distribution which depends on a vector of
parameters @ Type I models include scalar and vectorial probability
distributions. Usually, the noise has an expected value equal to zero, so
that u is the mean value of y. When y is a discrete variable the value u
often appears as a parameter in the distribution of the noise.

A more comprehensive approach to explain the behavior of y is to
decompose p into two terms. The first contains the general level of y
and the second, f5(x, f§), the effect of a known vector x of predictor
variables. In this way we obtain an explicative-static or type II model
and it is often assumed, citing the central limit theorem, that the noise
has a normal distribution. The most important class of type II models is
the linear model, obtained when f, is a liner function of the unknown
parameters f3:

falx, B) = x 1By + X8, + - + X By

If the variable y is qualitative, it is possible to write a similar expression
(after some transformation) and we obtain the class of log-linear and
categorical explicative models.

The dynamic counterparts of these models are designed to take into
account any sequential character of the observations. There are two
basic approaches to represent the dynamic structure of a system: The
first approach uses a representation that is similar to the static model,
but allows the parameters to change, stochastically, over time. This is
generally called the state-space representation -of a dynamic variable.
The second approach relates current values of the variable to past
values using a difference equation representation with parameters that
are assumed fixed. For type III models (extrapolative-dynamic) Table 1
shows the state-space approach which is characterized by two proper-
ties: (1) The systematic part, or expected value, of the variable changes
over time according to a given structure f; which is typically assumed to
be linear, and (2) the noise has a probability distribution that may or
not change over time. For discrete variables, the parameters of this
probability distribution often depende on p,.

For example, the simplest representation for a discrete stochastic
variable with two possible states and first order Markov dependency is:
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Vo=t 1y
p(ul =1- ﬂt) = My P(u, = —,ut) =1- Hy (21)
B = Po1 + - 1(P11 — Poy)

where y, can only have the values zero and one, y, is its expected value
(in this case the probability that y, equals one), and p,, and p,,
represent the transition probabilities between states zero and one. This
is the classic two state Markov Chain. As we see the probability
distribution of the noise is changing across the time.

As another example, a classical state-space representation of a
simple time series model is:

e =+ 4
B = Q-1 + & (2.2)
u, and ¢, are independent normal variables

Both models are particular cases of the general representation of Table
1.

The second approach to the modeling of stochastic processes is the
difference equation representation which has the general structure:

Yy = k + g(yt—l, Yi—25 s ¢) + u,

u, ~ F(0). @3)

Here the explicit dependence of y, on its past values is displayed in the
structural equation. This approach has been particularly useful in time
series models. For example, model (2.2) could be written using the
backshift operator, B, as:

e — ¢yr—1 =&+ (1 - ¢B)ur

or, since the addition of white noise plus an MA(1) process on the
righthand side is itself an MA(1) process:

(1 - ¢B)yt = (1 - 9B)at

which is an ARMA (1, 1) process with standard (2.3) representation:

e )

W= Z Y- + 4,

i=1
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or

n(B)y, =4

where n(B) = 1 — n;B — n,B”... and its coefficients can be found using
the relationship:

(1 —¢B)(1 —0B)"! = n(B)

The generalization of type III models to include exogenous variables
is now straightforward and is shown in Table 1. Again two kinds of
representation are possible in the same spirit as model III: a difference
equation form, which is assumed in Table 1, and a state-space approach.
As both ways can be considered equivalent from a mathematical point
of view, the choice between them has to be made by methodological
considerations: which of these makes the identification of the process
simpler? which is better for estimation and diagnostic checks? (See Pefia
(1978) for a discussion of the advantages of the difference equation
representation).

In both cases, the functions f; and f, are typically assumed to be
linear:

JaDi-15 e @) = 1Yoy + P2V n + o,
f3(x, B) = vi(B)xy, + -+ + vi(B)x,,
with

vi(B) = Bo; + B1:B + B1:B> + ---.

Type IV models include transfer function or dynamic regression
representations, intervention models and multivariate time series with
exogenous variables, among others. It is interesting to note that so far
little has yet been done to develop this class of models for the case in
which y is a qualitative variable, but it seems reasonable to hope that it
will be studied in the near future.

Type I and type II static models can be considered to constitute the
«first generation» of statistical models. They are still the most frequently
applied models and their study is the core of the statistical curriculum in
most universities. Many textbooks even identift statistical model build-
ing with this class.

200



PENA. D. ON THE LOGICAL DEVELOPMENT OF STATISTICAL MODELS

Type III and IV models, the dynamic counterpart of the above, may
be seen as the «second generation». They have emerged in statistical
practice in our century and they are still taught infrequently and,
considering that we are living in a dynamic world, less often applied.
However, much research has been done in recent years on dynamic
models and widespread use of them in the years to come can be
foreseen.

The new trends in statistical modeling could be characterized as
assuming more generality in the model structure. The classical represen-
tations almost always assume, first, the same pattern or distribution for
all the observations; second, linearity in the response; and third, a
simple distribution for the noise. Although the first assumption was
relaxed for Type I models in the XIX century to accomodate outliers in
the sample, its extension to Type II models has been made only in the
last twenty years and its application to dynamic models is still just
beginning. The same could be said of nonlinear statistical models and of
the search for more general noise structures. Table 2 summarizes some
of these possible generalizations for each type of model.

3. SOME COMMENTS ON THE HISTORY OF MODELS

Where does the history of statistics begin? If we think of statistics as
the science which studies how to information about reality by means of
models, it is clear that we should take the emergence of the first
statistical model as the natural birth of this discipline. According to the
previous section we should look for the appearance of the simplest Type
I model: A static extrapolative model for a count variable with only two
possible different values. Let us call this variable y and agree to establish
y =1 and y = 0 to represent these two values. The model would be:

y=p+u (2.1)

where p is some constant which represents the level or mean value of y.
If p is the expected value, the probability distribution of the noise u is
completely determined and should be:

u =1 — p with probability p

u = —p with probability 1 — p. (22)
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This simple model has some relevant features. First, the probability
distribution of the noise depends only on the constant p which is,
therefore, not only the expected value of the variable, but also the
parameter that specifies the probability distribution of the noise. Se-
cond, this model could be used as a basic block to formulate more com-
plex types of models and, in particular, the straightforward extension:

fMA)=p+e

where f,(A) is the relative frequency of some event, p its probability and
¢ the noise which has a binomial distribution with parameters n, number
of trials, and p.

The fact that p was both a probability and an expected value
explains why both ideas could be taken as a starting point for the
probability calculus (see De Finetti (1975) for a subjective development
of this aspect) and why both ideas were so closely related in the XVII
century. Third, as is well known, this model was initially applied to
games of chance, where the value p did not need to be estimated, but
could be conjectured from symmetry considerations, and so the estima-
tion problem did not arise.

The appearance of this model required not only the knowledge that
relative frequencies stabilize in the long run, but also the concept of a
probability distribution for the noise. Although the first point was
recognized by writers of the Renaissance at the end of the fifteenth
century, we had to wait until the XVII century for the emergence of the
concept of expectation (Huygens in 1657, see Maistrov (1974), p. 49) and
of the idea of a probability distribution as a mathematical model to be
applied to a large class of problems. (J. Bernoulli in «Ars Conjectandi»,
see Maistrov (1974), pp. 68-69 and also Todhunter (1865).)

The next important step occurred with the development of a
statistic-extrapolative model for a continuous variable. The practical
problem connected with is was the modeling of astronomical measure-
ment errors. Following the publication of Newton’s theory, many
leading mathematicians and astronomers of his century were concerned
with contrasting the theory with existing data. It soon became clear that
a theory was necessary to handle the several slightly discrepant observa-
tions of the same quantity that were obtained in repetitive measurement,
and this led to the model:

y=u+u
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where now u cannot be calculated by logical reasoning about the
symmetry of a die or some other gaming device, but must be estimated
from the data. This problem led Daniel Bernoulli to the discovery of the
maximum likelihood method of estimation. (See D. Bernoulli (1777).)

The next logical stage in this evolution was the emergence of Type 11
models. Laplace stated, at the beginning of the nineteenth century, that
the variability of astronomical variables could be explained by taking
into account other measurement variables x. He assumed a linear
relationship and was able to estimate the parameters of the functional
equation by minimization of the absolute errors. (See Stigler (1975).) In
the application of Type I and II static models to measurement data, it
made sense to think of the error component as explained by a large
number of small additive effects, which led, via the central limit theorem,
to the normal curve.

If the Type I model brought up the central problem of the estima-
tion of model parameters, the use of Type II model accounted for the
development of the least squares method of estimation by Legendre and
Gauss (see Seal (1967) for a good history of this problem) and for the
general development of the linear model by Gauss.

An interesting’ fact that emphasizes the importance of practice in the
development of statistical models, as stressed by Box (1983), is the
following: as we have seen, Type I models were first developed for
qualitative variables; however, Type II models for quantitative variables
have not been fully developed until recently (with the log-linear model
and related topics), when the need of a better understanding of complex
sample surveys had become acute.

From the middle of the XIX century, the theory of Darwin became
the moving force for the development of statistical thought, replacing
Newton’s theory in leading the mainstream of statistical advances.

The application of Type I models to biological data showed the need
for new kinds of probability distributions to cope with the highly
skewed and heavy-tailed distributions that were observed. Karl Pearson
enlarged the class of statistical models by proposing a system of fre-
quency distributions, and faced the problem of estimation by introdu-
cing the method of moments.

Fisher was the first to imagine the linear model with qualitative
explanatory variables, and to analyze it he introduced the Analysis of
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Variance. The importance of Fisher in the development of Type II
statistical models has been clearly discussed by Box (1978).

The concept of stochastic dependence among variables and the need
to build dynamic models did not appear until the end of the nineteenth
century, and so it can be safely stated that dynamic models belong to
the present century, although the roots of a stochastic process can be
found in the early problem of the duration of play, a situation that can
be regarded as a linear random walk with absorbing barriers (see
Tatcher (1957)). Type III sthocastic models first emerged in the study of
the extinction of surnames by Galton and Watson, which led to bran-
ching processes (see Kendall (1966) and Harris (1963)), the work of
Bachelier and Poincaré on the random walk to explain the Paris stock
market, the work of Einstein on Brownian motion (see Brush (1968)), and
the seminal work of Markov in 1907 on stochastic chains (see Maistrov
(1977)). It should be noted that much remains to be done to unify the
several varieties of Type III models that have since been developed.

The state space representation of stochastic processes has been
mainly used in the control theory and engineering literature. See Emp-
hremides and Thomas (1973) and Ephremides (1975) for a review of
some benchmark contributions. For continuous variables observed as a
time series, the difference equation representation has been in use since
Yule (1927). It is interesting to note that here, as in other areas of
statistics, the parametric models, such as those advocated by Box and
Jenkins (1970), have shown clear advantages over the non-parametric
approaches, such as those developed for spectral analysis.

Although some kinds of Type IV models have been discussed in the
statistical and econometric literature, only in the last few years have
there been important steps toward linking this class of model with
general statistical methodology. However, there is still no complete,
coherent theory for building these kinds of dynamic models for qualita-
tive variables.

As might be expected, the vectorial representation of all these types
of models lagged behind the scaler forms. The first multivariate distribu-
tion did not arise until the middle of the XIX century (see Lancaster
(1977)) and the multivariate linear model was first studied in the 1930’s
and 1940’s. The study of vector representations of dynamic models is
still far from complete. See Karlin and Taylor (1975), Hannan (1970),
Tiao and Box (1981), and Pefia and Box (1987).
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As far as the generalizations of these models are concerned, the
concept of setting up a model in which all the observations do not
follow the same distribution emerged in the middle of the XIX century
for Type I models. Glaisher (1872-73) assumed that the data were
normally distributed with a common mean k, but with unknown and
unequal variances (see Barnett and Lewis (1978)). Since then, the outliers
problems has led to new structures for the noise that have gone in two
directions. The first, and the most rewarding one, is to embed the
classical noise structure into a new, more general, distribution. This is
the path followed by Jeffreys (1932) for the contaminated normal model,
by Tukey (1960) for the mixture of distributions with different variances,
by Box and Tiao (1973) for the exponential family of heavy-tailed
distributions or by Box and Cox (1964) for the transformation problem.
The second path is to assume a change in the systematic part that, for
Type I models, leads to slippage models (see Barnett and Lewis (1978)).
The extension of these ideas to Type II models has been partially made
in the last twenty years but there are still very few results for dynamic
models.

The appearance of computers and of nonlinear optimization techni-
ques has made possible the growing interest in nonlinear models.
Broadly speaking, changes in the systematic part could be considered as
a special kind of nonlinear structure, but again a general structure is still
lacking.

4. MODELS AND METHODOLOGY

The methodology of statistics has incorporated new tools and
procedures as the need to build new classes of statistical models has
appeared. The application of Type I models for continuous variables
motivated the problem of estimation. The analysis of residuals and the
need for careful diagnostic model checking arose in the development of
the linear model. The model identification stage was first clearly esta-
blished for building ARIMA time series models. Finally, the develop-
ment of more complex Type IV dynamic models is showing the need for
a new stage in which the sensitivity of the model to the data is explored.

If we reviewed the text-books of the 40’s and 50’s and even many
from the 60’s, it would be clear that the core of these books refers to
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Type I kinds of models. In this context, the main problem of statistical
model building was considered to be the estimation and hypothesis
testing problems, and for many authors the concepts of statistical in-
ference, statistical model building, and estimation of parameters and
hypothesis testing were considered synonymous. The methodology
advocated was therefore static. It was assumed that the statistician
decided from the outset what kind of probability distribution should be
adequate to the situation according to his «a priori» knowledge and
then he either went through the traditional process of interval estima-
tion and hypothesis testing, or, as Jeffreys, used a Bayesian approach to
estimate the parameters of the model. In the classical framework, a
goodness of fit test of the distribution could be made to confirm the
adequacy of the assumed model.

Those textbooks rarely suggested that the initial assumptions about
the distribution could be wrong, and the methodology so stated was
static although full of mathematical harmony. When models of Type II
were built, the above approach seemed obviously inadequate, but the
kind of iterative process needed for any successful application of these
models was regarded by most authors as, somehow, «cheating with
data» and so not deserving of a place in scientific statistical textbooks.
Besides, the fitting of a multiple regression model was so cumbersome
from a computational point of view that the estimation of the parame-
ters of any model became the crucial problem.

The computer made it possible to integrate the Type II models into
common statistical practice. Statisticians soon became aware of the need
to apply diagnostic checks to the residuals of a linear model and to use
these checks to reformulate it and to learn from its deficiencies.

Although the analysis of residuals had been done informally before,
in one way or another, by all good statisticians, the systematic study of
how to identify departures from underlying assumptions and the need to
integrate this knowledge into the model building process did not arise
until the 60’s. Anscombe and Tukey (1963) and Draper and Smith (1966)
were, among many others, leaders of this movement, and their work has
had a strong influence in establishing diagnotic checking of the model as
an important part of statistical methodology for building models.

It gradually became clear that the same graphical displays and
informal analysis that were useful to check residuals could be used
earlier in the model building process to identify possible alternative
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model structures. The need for these tools was especially urgent for
dynamic models in which the lag relationship is normally unknown and
cannot be obtained from a priori reasons. Box and Jenkins (1970)
showed the need for an identification stage as a fundamental step in the
ARIMA model building methodology. Their work on time series models
made clear how to investigate empirically the functional form of y, for
Type III models, where we cannot rely on external information to do so,
as was supposed (often wrongly) for Type II models. In fact, there is one
important difference between a classical linear model and an ARIMA
model: in the former, the function f of Table 1 is either completely
known (as in a designed experiment) or is somehow controlled by the
statistician through the choice of the explicative variables, whereas in
the latter the structure of y, is unknown and should be determined from
the exprimental data.

An important aspect of statistical model building philosophy is the
concept of robustness. In addition to criterion robustness and inference
robustness (see Box and Tiao (1973)), it is important to take into
account the «data» robustness. Data can be thought of as the ground on
which we build the model structure, and the degree to which alternative
models rest on the data can be quite different. The point goes further
than the need for procedures for outlier rejection because the question
we should ask is to what extent the basic properties of the model are
due to a small fraction of data values. This stage can be called the
analysis of data sensitivity or data robustness. To accomplish this task,
techniques such as cross-validation and influential observations in the
spirit of Cook and Weisberg (1982) and Belsley, Kuh and Welsch (1980)
can be applied, although much remains to be done in this field. The
importance of these works is to point out that even in the well-known
and extensively studied linear model, the effects of small subsets of data
on the properties of the model can be unexpected. Needless to say, when
we build a complex Type IV model it is of outstanding importance to
find out if its main properties are based on a small subset of the data to
prevent us from building a whole theory on a small amount of informa-
tion. .

Figure 1 displays this stage in the framework of statistical methodo-
logy. The figure shows togethet the logical steps of the iterative model
building philosophy and the parts of statistical knowledge that are
adequate for each purpose. Data Analysis can be seen as the set of

208



PENA, D. ON THE LOGICAL DEVELOPMENT OF STATISTICAL MODELS
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procedures to identify logical patterns in data that can lead to entertain
an initial model. The study of data sensitivity or data robustness has
been differentiated in the figure from the stage of diagnostic checking.
The objective of diagnostic checks is to investigate if any of the assumed
hypothesis of the model are clearly wrong and could be discredited by
data. On the other hand, the objective of study of data robustness or
data sensitivity, which comes after we have checked that the assumptio-
ns of the model cannot be rejected, is to measure how the properties of
the model are supported by all the data, and how these basic properties
change when some part of data is not taken into account. For example,
Figure 2 shows two simple regression models. In the first, the relations-
hip between x and y is clearly supported by all the data, while in the
second is based only on two points. Indeed, we would like to know if we
are in the first or in the second situation, and, as the complexity of the
model increases, the study of this problem becomes more and more
important.

(a) (B)

Figure 2

As the study of data sensitivity should be based on deleting observa-
tions from the model, sample reuse techniques, such as the jackknife,
cross-validation and the bootstrap, must be useful.

CONCLUSIONS

It has been stated that the unity of statistics lies in its methodology
and in its models. These models can be classified in a logical framework
which allows a straightforward interpretation of the history of this
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science and it is helpful to understand why the methodological changes
have occurred.

This point is important for teaching and research. For teaching, it
stresses the need for a different approach to the traditional presentation
in most textbooks. Statistical methodology should be emphasized an the
process of «enrichment» of the model through generalization from
extrapolative-static models to explicative-dynamic ones should be illus-
trated with real data. Probability calculus and the theory of stochastic
processes should be integrated as the mathematical structure needed to
build logical coherent models, and the role of data analysis and descrip-
tive as part of the model building process should be pointed out. From
the point of view of research, this analysis has identified areas in which
much work needs to be done before a unified vision of the field can be
achieved. Moreover, the analogy betwen the development of models of
different types is useful to foresee potentially rewarding lines of investi-
gation.
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