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In this paper we present the motivation for using the Truncated Newton method
in an algorithm that maximises a nonlinear function with additional maximin-like
arguments subject to a network-like linear system of constraints. The special
structure of the network (so-termed replicated quasi-arborescence) allows to
introduce the new concept of independent superbasic sets and, then, using
second-order information about the objective funtion withut too-much computer
effort and storage.
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Optimizacién de una funcién no-lineal Maximin sujeta a condiciones
tipo Cuasi-Arbol Replicado

En este trabajo se presenta la motivacién para utilizar el método Newton
Truncado en un algoritmo que maximiza una funcién no lineal con argumentos
adicionales de tipo maximin, sujeto a un sistema lineal de condiciones de tipo grafo.
La estructura especial del grafo (denominada expansién horizontal de un cuasi-arbol)
permite introducir el nuevo concepto de conjuntos superbésicos independientes y,
por tanto, facillitar la utilizacién de informacién de segundo orden sobre la funcién
objetivo sin requerir excesivo tiempo de célculo, ni precisar demasiada capacidad de
ordenador.

Palabras clave: Programa no lineal; Algoritmos numéricos; Método Newton
Truncado; Conjuntos superbésicos independientes; Ruta equivalente bésica.
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1. INTRODUCTION. PROBLEM DESCRIPTION

This paper reports the motivation for using second-order information about the
objective function of a nonlinear network flow problem so that the computer effort
and storage are affordable even for large-scale cases. The problem consists in the
maximization of a nonlinear function subject to a linear system of constraints with a
special network-like structure (so-termed replicated quasi-arborescence ). Let]
denote the set of single-segment nodes in a given quasi-arborescence, and P, (res. Q)
the set of single-segment nodes directly downstreeam (res. upstream) for
single-segment node j forj & J. Usually |Q=1, but it is allowed |Q; > 1 ; assume
that the latter case is not frequent, nor its cardinality is very big so that the word
"quasi" makes sense. Let T denote the set of single-segments of the replicated
quasi-arborescence along which the quasi-arborescence is expanded. The decision
variables are denoted ry; , the flow linking single-segment nodes j and i forie Q, ]
€ J atsegmentt forte T; and s, the flow linking segmentst-1 andtatj fort €
T,jel. :

tj°

The constraints form a linear system that.can be represented by a special direct
graph whose nodes correspond to the state of the single-segment nodes at a given
segment, and the arcs correspond to the decision variables. The flow balance
equations can be expressed

-ZieP Iy - Sy + ZieQ Iy b

+ s VteT, jel ¢))

t+lj — Ot
where by; is the net exogenous inflow to single-segment node j at segment t. Letting
X be a vector of all decision variables and b a vector of the exogenuous inflows,
system (1) can be written AX="b, where A is the node-arc incidence matrix of the
replicated network. The decision variables are bounded such that m<X<M . Each
column of A corresponds to an arc and each row to a node. The nonzero elements
in a column are +1 in the row corrresponding to the node where the arc originates
and -1 in the row where the arc terminates. In addition, there is a root node
which represents the Exit in all segments for single-segment node j € J such that 3
1eQ,i=[J|+1.

Following a traditional approach, see Murtagh and Saunders (1978), matrix A
can be partitioned such that A = (B,S,N), where the columns of B form a basis and -
correspond to the basic arcs, and the columns of S and N correspond to the
superbasic and nonbasic arcs, respectively; let B, S and N denote the related
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basic , superbasic and nonbasic sets of arcs. Nonbasic arcs are temporarily fixed to
their bounds, and the flow in sets B and S vary between their bounds.

By construction of A it can be shown that the arcs corresponding to columns in
any basis form a spanning tree of the network. A maximal basis spanning tree for
a given feasible solution avoids a basic-superbasic degenerate pivot, see Dembo and
Klincewicz (1981); otherwise, null steps are more frequent than in problems with a
general structure.

Let Z be the variable-reduction matrix whose columns form a basis for the
null space of A, given AZ= 0, such that

Z=((-B1IS)t, It,0t)t 2)

Let n denote the number of nodes (without including the root) and a denotes
the number of arcs. Let Basic-Equivalent-Path (BEP) define the unique path in the
basis spanning tree that leads from originating node, say i, in superbasic or nonbasic
arc k to termnating node, say j, ; let B, denote the set of arcs in the BEP of arck .
Arc k' € B, has a forward orientation in the BEP of arc k if p(iy), = j,» , where
p(.)i is the predecessor of node (.) in the BEP of arc k ; it has a reverse
orientation if p(j), = i.. Let p, denote the columun (B'S), and then,
p=(B'S). The nonzero elementos of p, fork € S U N are +1 for a forward
orientation and -1 for a reverse orientation. The inexpensive implicit computation
of matrix Z (2), via specialized network data structures as in Rosenthal (1981), and
the structure of the Hessian matrix G (6) (see below), makes affordable the using of
second-order information even in large-scale problems.

The replicated arborescences have the property that a-n= n; note that
usually, a- n>>n in a general network. As aresult, | B, | is very small. Any
single-segment of our network is a quasi-arborescence and, then, | B, | is still
relatively small; this property will be exploited in the related algorithm.

The paper is organized as follows. Seccion 2 describes the objective function.
Seccion 3 summarises the variable-reduction environment of the algorithm. Seccion
4 presents the approach for obtaining the superbasic stepdirection, and introduces
the new concept of independent superbasic sets. And, finally, Seccion 5 describes
the de-activating process.
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2. THE NONLINEAR OBJECTIVE FUNCTION

Lethy denote the nonlinear argument fort € T andj € J such that

where ktj is a nonlinear function of the s- variables, such that

k= fu( Sy Sppy) 4)

and R;; denotes the upper bound for ry; having any influence in hy . Let the
objective function be expressed as follows.

max{ ZtETZjEJ(htj' Pq-max{O, S(j“th})} ®)]

where Ty >0, and P; gives the unit penalty on excess s; - Ty;.

Let VL denote set of so-termed linear arcs (t, j, i) with variable coefficients ,
and NL the set of nonlinear arcs (t,j). Note that htj is a linear function of X; I
if s; ands,,; are fixed. The Hessian matrix G has the form

o [0 G, ) {VL} ©

G, G, {NL}

such that G, is a two-diagonal matrix for | Qj |=1Vj e J,and G, is a symmetric
tri-diagonal matrix. Note that the nonzero r-elements related to the same pair (t, j)
in a given column of matrix G, have the same value forall ie Q., for| Qj >1,je J.

The nondifferentiability of the objective function does not introduce any
difficulty on evaluating matrix G , provided that the basic spanning tree is kept
maximal and the basic-based first-order estimation of the Lagrange multipliers of the
Just-deactivated nonbasic set (see Section 5) is used as its stepdirection.

There are numerous examples of the application field of replicated
quasi-arborescences. Probably, the most typical is the management of hydro-
electric power systems where the single-segment nodes are the reservoirs, the river's
stream can be represented by the quasi-arborescence, and the segments are the time
periods along the planning horizon; see Escudero (1983). Other examples lie in the
electrical circuits design, water distribution systems, urban traffic systems and so on.
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3. SKELETAL ALGORITHM FOR OBTAINING FEASIBLE-INCREASING
SOLUTIONS.

Let d define the stepdirection from feasible solution, say x such that the new
iterate can be expressed

where {0y} is the steplength vector. Given system (1) and the matrix partition
A = (B,S,N), by linearity it results

(B, S,N) (dg, d', diy) =0 (8)
being d = (d%;, di, dY)t. The basic stepdirection dy is used to satisfy the

constraints system (1), the nonbasic stepdirection dy is temporarily fixed to zero,
and the superbasic stepdirection dg is used to maximise the objective function (5).

At each iteration, the problem then becomes determining vectors d and o,
such that {0y d, } is feasible and increasing enough . Direction d is feasible if
system (8) is satisfied. Since dy=0and dg is allowed to be free, it results
dg=- B!Sdg, suchthat d=Zdy.

The ascent enough stepdirection dg can be obtained by "solving" the problem

max{htdg + 1/2 d' Hdg} , where the reduced Hessian H can be expressed H = Z'GZ,
and the reduced gradient h can de written

h=7Zg=gs- Suy ®)

such that the basic estimation |y of the constraints Lagrange multipliers solves the
system

gs= B'Mp (10)
and g = (g%, 8% 8%)'. Note that the solution dg of system

Hd=-h (1)

is feasible-ascent for a positive definite matrix - H and a maximal basis spanning
tree.
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Solving the n-system (10) when the arcs corresponding to the columns of B
form a spanning tree does not need a greet computational effort, but the LP simple
rules for updating pu do not apply- when the objective function is nonlinear ( even if
basic set B does not change ) . From other point of view, using sytem (10) in
expression (9) is computational advantegous, since

1) a-n=m forany replicated arborescence and, then, | B, | forke SUN is
small,

2) The cardinality of the set to be used while iteratively solving the above
quadratic problem is much smaller than a - n, and

3) B, must be used, in any case, for obtaining the stepdirection dg and the
steplength o.. Then, it can be written

b= g - Zieby Py g (12)

Matrix H is likely very dense even for sparse matrices Z and G. Since we are
dealing with large-scale problems, we cannot afford to use matrix H, nor any of its
approximations suggested in the literature. We suggest to use the Truncated Newton
method (see Dembo and Steihaug (1983), and Escudero (19845) at independent
series of iterations, such that matrix H does not need to be stored and the computer
effort and storage are within affordable limits. Note that system (11) is not needed
to be completely solved at every iteration for getting, under mild conditions, a
Q-superlinear rate of convergence (see above references).

The steplength {0y } must be feasible and {oy d,} must be increasing enough;
it is interesting it may allow to activate as many as possible superbasic arcs; see
Escudero (1983).

4. INDEPENDENT SETS OF SUPERBASIC ARCS.
4.1 DEFINITIONS.

The Truncated-Newton method does not require the calculation of any Hessian
matrix, but the product

q® = H3® = Z!GZ 8D (13)
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For obtaining q(, the superbasic set S is partitioned into, say | P| disjoint
so-termed independent superbasic sets, such that SAUS® V pe P, and
S SP ={$p} Vp,qe P. Let BP =B define the set of basic arcs covered by the
superbasic arcs included in set S®, such that BRAUPB, V ke S®; et
C® AB®P U SP® define the set of basic and superbasic arcs to be used for obtaining
dg®.

Superbasic arc k  will be included set S® iff the following condition is
satisfied.

BO NP % {0} v (3G 20| (ge{k}UB) A (g e CP)) (14)
That is, two superbasic arcs will belong to the same independent superbasic set

if any flow change in one of them affects the other’s solution feasibility or
objective function coefficient.

Sets, say S® and S@ will be joined in one single set iff the following
condition is satisfied

(B(P)r\B(‘U;t{(b})v(Ggg-;tOl ge CP A ge CW) (15)

Note that | B, | is small, G very sparse, and | S| and | S@| can be chosen to be
small in the de-activating process.

Let CAuU C® V peP. Let VL ¢ VL N C define the set of basic and
superbasic linear arcs whose variable-coefficientes are not fixed at the current
iteration. Let NL A NL m C define the set of nonbasic arcs in set C.

Note that at major iteration say 1, |P| independent iterations are consecutively
executed; note also that there are {i} minor iterations to be executed at each iteration

p for peP.

The advantages of using independent sets at sucessive major iterations are as
follows.

1) The computational effort for obtaining vector ¢ (13) is drastically reduced.

2)  Faster minor iterations at the price of more ( but much cheaper ) major
iterations. Note that the elements of matrix G out of set C? are not modified
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after obtaining dg(P . Note also that only the elements of matrices G, and G,
related to set C and the gradient related to set VL U NL are to be evaluated at
a given major iteration.

3) Independent steplength upper bound for each set CP V p € P. Then, it allows a
deeper step along the search direction; (see Escudero (1985)).

4)  Strong reduction on the number of arcs (i.e., cardinality of set C®) to be used
for obtaining the steplength related to set C® . Note also that only the terms of

the objective function (5) related to set C®) are to be recomputed for obtaining
the objective function value F(X¢®) related to each trial step.

4.2 REDUCED GRADIENT USED AS A SUPERBASIC STEPDIRECTION.
Assume that the p-th stepdirection is being obtained for p € P. Assume that
VL® UNL® = {¢}; in this case, a LP-network subproblem must be maximised,
such that the related stepdirection d® can be expressed
d®y = hy = g - Tiep pi g V keSP (16)

AP =2y o Py dy Vk' e B® (17

4.3 OBTAINING VECTOR q® IN THE TRUNCATED NEWTON METHOD.

Assumed that 0 is related to the superbasic stepdirection dg®. Let VLAVL®),
VLPA C®AVL,and NLAUNL® for Vpe P. Let VL®_ A VL®/VL®
Let C,® define the complement of set C® inset BUS UN.

1)  Obtain intermediate vector 8V := Z ®§,D, such that
50:= I, o swpyd YV 1e B®

§,0:= 5 V1eSP (18)
80 :=0 VieC®
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2) Obtain intermediate vector § @ := G 8D, such that

6®:= 0 Vl1e C,®uUVL®

60:= Fjem® Gy 80 Ve VL® (19)

0 M= 2 vi® Gy 80 + 5w Gy 8 V1e NL®
Computation of vector @ is very fast since G, is a tridiagonal symmetric matrix,
each column of matrix G, has only two different nonzero values, the elements of 3®
related to set VL, (® are not used (since the related elements in matrix G, are zero),
and only the rows of the Hessian matrix related to set VL® U NL® are used.

3) Obtain vector q®:= Z®t§H = - (B1S)PtJ D, such that
B0 = ( 8,0, 5.0, 5y,

qP= 80~ Seppy 5O Vke SO (20)

5. DE-ACTIVATING STRATEGY
5.1 PRICING NONBASIC ARCS.

Let us define indicator y, k € N as follows. v, = 0 means that nonbasic arc k
is not a candidate to be de-activated; otherwise, it takes the sign of its de-activating
direction (+ for up-direction and - for down-direction). A nonbasic arc will not be

a candidate to be de-activated if the pricing is not favorable or it is a blocked arc; see
below.

Let D define the set of nonbasic arcs to be de-activated ; that is, the arcs that
will be moved from the nonbasic set to the superbasic set. LetDAUD® Vpe P
and D® N D@ = {0}, where D® is the independent nonbasic set to be de-activated
and, then, joined with the independent superbasic set S®). A candidate nonbasic are
will not be de-activated if | D | is at its given (upper) bound and there is, at least,
any other candidate arc with higher (first-order) guarantee of a stronger increase in
the objective function.

Let 43 , 3, and a, denote the lower bound m, , "intermediate” bound (R;;
or Tj; for related arc k ) (see Section 2) and upper M, of the feasible flow in arc k ,
respectively. The nonbasic Lagrange mutipliers estimation A is obtained as follows.
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Let
M o= gd=-Tep ppg; VkeN 21)

where Al is the Lagrange multiplier estimation related to the i-direction of the
potential move of nonbasic arc k , and g, ! gives the gradient element related to the
i-direction of nonbasic arc k . The directions can be + (up), - (down) and 0 (no
move).

Note that g} = g+ fgr X, = a3 (lower bound) and g,! = g~ for x;= ,)a,
(upper bound ) such that g,! = g, , where g, is the usal gradient element related to
arc k . Both gradient elements g,* and g~ (and, then, A, * and A" ) are required for
the nonbasic arc whose current solution is at its "intermediate” bound ;a, . Note also
that g* = g~ =g, fork'e Bysuchthatx, # ;.

Gradient elements g;*= g, for a basic or nonbasic arc, say | such that x;= ;3
are obtained as follows: g*=0 and g =k for 1=(t, j,1); g* =g forl=(tj)
such that max{0, Sy - Tt}- }i= Sy - th while obtaining, in the usual way, gradient
element g, and g;” = g;* + P; ; see (5). Element gJ. fork'e By and x,. = ;2. is
expressed as follows.

g >

8= Bt (8l =8 A Pac=-DV(gi=8 A Pc=+1)
(22)

g = g , otherwise

Finally, indicator v, for nonbasic arck is assigned as follows. For x, = ;a,
Y =+ if in > ¢, where i = + ; otherwise, ¥, = 0 where € is a positive tolerance
(typically,10E-07) . Forx, = ya,, Yc=- if A} < - € wherei = -; otherwise,
Y =0 . Forx, = ;a, itresults

Y= 0lAF<e A A 2-¢

Y= +IM>E A N 2-E (23)
Y= -1 M SeA N <-€

Ye=Jll A I=Max {I M), | A |}, otherwise

Thus, assign A := A0 fori=",.

Note that expression (22) is based on the direction i and orientation pyy . The
ambiguity on g,J fork'e B, M B,| X, = ;a, is solved by blocking the nonbasic arc,
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k orl that satisfies test t1 (see below); note that there is not a null step for t, since
A is used as the stepdirection of set D , the solution of a superbasic arc is not, by
definition, at any of its bounds, and a maximal basis spanning tree is assumed (i.e.,
there is not any j in B® V pe P such thatx; is at any of its bounds).

5.2 BLOCKING NONBASIC ARCS.

A maximal basis spanning tree avoids degenerate basic-superbasic pivots, but it
does not prevent null steps when a non basic arc is de-activated. Therefore, a
mecanism is needed for testing whether a nonbasic arc, say k must be considered as a
candidate to be de-activated. It may be carried out at the same time the nonbasic arc
is priced (i.e., its Lagrange multiplier estimate is calculated) and then y, is setto O if
otherwise a null step could not be prevented. Thus, v, =0 if t1vt2vt3, where tl, t2
and t3 are the result of the following blocking tests:

tl: A = min{ A, A | X; = @3 forje BN Biale DAYv#0A %Y Pik Pji=-1

Note that I't] if the flow in basic arc j- changes in the same direction for any
flow change in the appropriate direction of arcs k and 1 (given by vy, and 7y,
respectively).

t2: (caseY=+): 3 je By suchthat
P = - 1(reverse) A (5= (u)aj) or
Pk = + 1(forward)a (x; = )a))

t3: (case Yi=-): 3je€ B, suchthat
ka =-1A (XJ = (l)a]) or
pjk = +1/\ (XJ = (u)aj)

If t1vt2vt3 we refer to arc k as a blocked arc and, then, it will not be a
candidate to be de-activated.

5.3 OBTAINING INDEPENDENT SET.D ® TO BE DE-ACTIVATED.

Let C®; A B®, U D® where B®;A U B, Vke DP) . Anarc, say k to be
de-activated must be included in set D® if any move d, # 0 effects the solution
feasibility or the objective function coefficient of any arc from set C® U C @), ;
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formally, D® A D® U {k} fork e D if t4A(t5vt6), where t4,t5, and t6 are the
result of the following including tests:

t4:  |S® |+ DP| <1

t5: (B®UB®,) NP, = {$}

t6: IGyu#0[(ge {ktUP)Aa(ge CP U CP)y)
where T is a given upper bound (typically, 60).

Now, to assure that sets DO V je P are independent, it is required to analyse
if any move d, #0 k e D® will effect the solution feasibility or the objective
function coefficient of any arc from the g-th set V q € P/{p}; in that case, both
sets D® and D@ mustbe joined. Formally, D® AD® uD@y {k} and
D@ A{¢} if arc k simultaneously satisfies t5vt6 for the p-th and g-th current
independent sets and, besides, the following joining test is satisfied.

t7: X

ic gy | SO+ DD <1

If Tt7 then arc k is not de-activated and, then, D A D / {k} ; if as a result,
D={¢}, then the set C must be revisited and partitioned in as many as possible
independent sets and, as a final solution, the upper bound T must be temporarily
incremented to a suitable value. Note that the procedure is executed during the
de-activating process and, then, hopefully, after many basic-superbasic arcs have
been activated on the (sub) optimization of the previous manifold.

CONCLUSIONS.

In this paper we have presented a rough algorithm that takes into account
second-order information for solving a type of large nonlinear network problems;
its main ideas may be easily extended to the general sparse case.

Taking advantage of the structure of the Hessian matrices G; and G, and
being the constraints system a replicated quasi-arborescence, the main features are as
follows. Null steps are prevented, even although the objective function has some
discontinuities, since the basis spanning tree is kept maximal and an ad-hoc blocking
de-activating strategy is used. The new concept of independent superbasic sets is
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introduced so that the Truncated-Newton method and the linesearch procedure can
be used for optimizing "in parallel]" the manifold of each independent
basic-superbasic set. Given the special structure of the Hessian matrix G and the
variable-reduction matrix Z , the computer effort for obtaing the vector q@¥ (13), at
each minor iteration i , is within affordable limits, since the cardinality of each
independent set’is usually small. One of the main reasons for not using the basic
estimation of the Lagrange multipliers of the nodes (apart the nonlinearity of the
objective function), is precisely the size of the basic equivalent path of each super-
basic or nonbasic arc.
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