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We obtain in this note evaluations of the total variation distance and of the
Kolmogorov-Smirnov distance between the sum of n random variables with non
identical Bernoulli distributions and a Poisson distribution. Some of our results
precise bounds obtained by Le Cam, Serfling, Barbour and Hall.

It is shown, among other results, that if p;=P(X;=1),...,p,=P(X=1) _satisfy
some appropriate conditions, such that p = f/n Z,p;—0, np—> e np°— 0,
then, the total variation distance between X +..+X, and a Poisson
distribution with expectacion np is p (2ITe)" "2 ( 1+o(1}).
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Sobre Aproximaciones de la Ley de Poisson

En este trabajo, consideramos evaluaciones de la distancia en variacién entre
leyes de Poisson, Binomial y de sumas de variables de Bernoulli independientes.
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1. INTRODUCTION AND RESULTS.

Let X,,..,X, be Bernoulli variables, and let S
pi=P(X;=1), and A= X,p; = np, i=I,..,n.

= X+.+X,

n

It is well known that, under appropriate conditions on p,,...,p, , the distribution
L(S,) of S, can be closely approximated by a Poisson distribution P, with
expectation A. The adequacy of such an approximation can be measured by the
total variation distance d(.,.) and by the Kolmogorov distance dg(.,0)
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d(1,0) = sup, cz| (A) - V(A) |, dg(K,V) = sup, | K((- o2, X)) = V(- o2, X)) |.
The following upper bounds for d( L(S,), P, ) are known:
d(L(S,), P,) < Al(1-e™MZ p?, i=l,..,n (Barbour and Hall, 1984), (1)
d(L(S,), Py < Zp(l-exp(-p)) < Zip? i=1,.,n (Le Cam, 1960). (2)

In the case where p= p,=...= p, , it can be verified that (1) gives always a
sharper bound that (2), since we get

d(L(Sy), Py < p(l1-e™) =p(1- {1- (1-eP)}") < np(1-e?P). 3)

Barbour and Hall's result precise also the upper bound of Romanowska (1979)
who showed that when p=p,=...= p,, we have

d(L(Sy), Py < p(1-p)'?; 4)

by (1), we get in general the bound
d(L(Sy), Py) < max g, p;- )
Even though (1) is sharp when A — 0 (it gives even the best result for n=1),
it does not come near the best possible evaluation when A — 0. This follows from

the results of Deheuvels and Pfeifer (1984) which we cite in Theorem A.

Theorem A. Let p= p(n)= p,;=...=p, be suchthatnp > o asn— e . We have
the following results.

1) Ifa=0, then

d(L(S,), Py) = np?(1+0o(1)). (6)
2) IfO<a<oo, andif

R=[0o+21-(a+41)"2] and S=[o+21+ (0+41)12], then

d(L(S,), P) = 2'lnp*{( a5 (S- o) ) /S! - (aRY(R- o) ) /R!}e™@ (1+ o(1)). (7)
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3) Ifo — oo, and if, in addition, np? — 0 as n — e, then
d(L(S,), Py) = pIIe)'?2 (1+ o(1)). (8)

Note thatin (7) we can replace np by o,and that, when o — 0,
R(o) = 0 and S(o) — 1, which yields (6) as a limiting case.

We shall extend in the sequel Theorem A to the non-identically distributed
case. This will be achieved through the following result.

Theorem 1. Let X,,..,X, be independent Bernoulli random variables. Let
S, = X;+...+X, and p; = P(X;=1). Let S * denote a binomial B(n,p) random
variable, where p=A/n = n-1%p;, i=l,.,n. Then
dLS)L(S,¥) <{1- m!E py+ i@ pd-pp) ALA-p)™ - 1. (9)
Before getting further, it is worthwhile to obtain a simpler expression for (9).
Corollary 1. Under the assumptions of Theorem 1, if we assume further that
max, ., p; =0 and X, p2- n''(%; p?) —0, i=l,..n; (10)
then
d(L(S,), L(S,*)) < {Z;p2-nl(Zp)?}(1+0(1)) i=l,..n. (11)
Corollary 2. Under the assumptions of Theorem 1, if we assume in addition that
lim ., n{ (& p¥Zp)- n'Zp;} =0, i=l,...n; 12)

then the results (6), (7) and (8) of Theorem A can be extended to the case where p
is replaced by n'Z, p;, i=l,..n.

Corollary 2 follows from Corollary 1 and the triangle inequality

d(L(Sp), Py) < d(L(S,*), Py) + d((S,), L(S,*)) . (13)
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We could use reversely this bound, starting from (1) and (8) to show for
instance that, if A — 0 andif AZn!log A — 0, then we must have

d(L(Sy), L(§,*) < M {Zp? -(1/n2[le)"?) (Z;p)?}, i=l,...n. (14)
It can be seen that (14) may be on some circumstances better than (11).

We shall also precise in this papet the bounds obtained by Serfling (1978) for
the following different choice of A. Let in general A=Z;A;, i=1,..,n. We have,
up to now, considered the case where ;= p;. However, some different choices may
be of interest as follows from Theorem B due to Serfling (1978).

Theorem B. Lety;=-log (1-p;) and lety=2%y, i=1,..,n, then
d(L(S,), P, S‘Zi( I- (v + ) exp(-v;) ) € 21 Ev2 i=1,..n. (15)
We shall prove in the sequel Theorems 2 and 3:

Theorem 2. We have

d(L(S,), Py <1- Hi (1- p;(1-exp(-p)) ) <Z;pi(1-exp(-py)) <X p? (16)

i=1,...,n

and

d(L(Sy, P) < - I {(y;+1) exp(- ¥)} <X (1- (v + Dexp(- 1)) < 215y,
i=1,..,n .

Theorem 3. We have

dg(L(Sp), Py) < 1-TI; (- (exp(- py)- 1 + pp)) < Zi(exp(- p)- 1+ p) < 21Ep? (17)
i=1,..,n, and

dg(L(Sy), Py) < 1- IT; {(v; +1) exp(- v} £ Zi(1- (v; +1) exp(- vp)) < 21 Zv2,
i=1,...,n .

We remark that the first inequality in (16) is mentioned by Le Cam (1960),
while the second inequality of (16), and the inequalities of (17) precise results of
Serfing (1978).
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2. PROOF OF THE THEOREMS.
We start with a simple lemma.
Lemma 1. We have the inequality
Zp; < (Zip; (1-pyt) {IL (1- py 3, i=1,...n. (18)
Proof. Put q;=p;(1- p;)! (18) is equivalent tothe inequality
Ziq; 2 (Zq(1+q)) {I; 1+ q) ¥, i=1,...,n.

But {I;(1+ q)}" < 1+ n!%,q;, i=1,..,n. (see e.g. Hardy-Littlewood-Pélya,
p-17), and hence, it suffices to prove that

(Zqi(1+ g)H {1+ 01 X q;} <Xq; = Zq(q+D(I+q)?, i=1,...,n.
This in turn is equivalent to show that

Z;q; (1+q; ) {q; - o' Z;qi} = - Z;(1+q)* {q;-n ' X;q;} 2 0.
This last result follows from the fact that, if p=n'%; q;, then

(q;- W (q;+1)71 < (gi- W) ( |;L+1 )1, and hence

(q- 1) (q+ D' <Z(g- W) +1)1 =0, i=1,..n.
Lemma 2. We have the inequality

P(S = k) <C(nk) (1- 0l Z; p)nk ( (0! Z;py(1- p) ! ) {T1;(1- p)}m)k, (19)
k=0,1,...,n.

Where C(n,k) =n!/ (n-k)! k!
Proof. Consider the expansion

(x+a,)...(x+a,) = x™+ C(n,1)R x™+ C(n,2)Ryx™2+...+R .
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The following inequality is due to Mac Laurin (see e.g. Hardy - Littlewood - Pélya,
p.51):

R,2 R2> ... 2R .
We have evidently

P(SII: k) = Hl(l- pl) C(Il,k)Rk ,Wit.h al = pl(l- pi)-l and Rl = n-l El pl(l- pi)-l .
i=1,...,n

It follows that
P(S,=k) < {II;(1- p)} C(n,k) {n'%; p(1- p) 1} < (20)
Ay = C(nk) {1- n? Zp 3™k (n! Z;py(1- pp ) {IL; (1- pp) 33K, i=1,...n.

Here, we have used again Cauchy's inequality (see e.g. Hardy-Littlewood -
Pélya, p.17) by which a,...a, < (n1Z; a)".

We now compare (20) to P(S *=k) = C(n,k) {1- n''%; p;}"* {n! X, p;}*.
ByLemma 1, Ay =2 P(S;=k), and hence,

d(L(S,),L(5,*)) = Z; max{0,P(S,=k) - P(S,*=k)} <X, {A- P(S*=k)} =% A -1,
i=1,...,n

which proves easily Theorem1.

The proofs of Corollary 1 and Corollary 2 follow by straightforward
expansions. The proof of Theorem 2 is based on a different technique, which will be
described in the sequel. We consider first the case n=1, and put x= x,, p= p, and
define Y to be a random variable with a Poisson P, distribution, where A is
arbitrary. We get easily:

dLX)L(Y) = 2 { |1-p- e + | p-her| + (I- (1+ M) e™) }.

Lemma 3. Lety= -log(1- p). Then, we have the following results:
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1) O<p<y.
2) Theequationin A: Ae*=p has:
(i) Tworoots 0<y<A,(p)S1<Ay(b)<eo whenO<p<el;
(i) One root 0 <y<A,(p) = Ay(p)=1 whenp=el;
(iii) No root otherwise.

We have A e < p whenever:

() pze’
(i) p < e! andeither AS A, (p) or A= Ay(p) .

In any other case, Ae™*> p.
Lemma 4.
1) IfO0<A<y=-log(l-p), then

dLY),L(Y) =p- Ae* 2 p- ye¥ = Epi(G-1) =
L-(y+ e = Z((-D4DYVICTY, j=2,.00.

In particular, for A = p, we have
d(LX),L(Y)) = p(1-eP)= % (p/ G-D!) (- 1) < p%

2) Ify <A<A(p), or A2Xy(p),or p 2 e'and A>7, then
d(L(X),L(Y)=1- (A +1)e ™ > 1 - (y+1)e".

3) IfA(p) < A< Ay(p) and O<p<el, then
dLE),LY)) = 1-p-e? > 1- (A +1)e > 1- (y +1)eY.

4) Inall cases,

infy dL(X),L(Y)) = 1- (y+D)e= p-(p- 1) log(l-p) = & pi (G- 1)) ! < 2172
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The result of Lemma 4 is due to Serfling (1978) for a general A. The case A=p
has been treated by Le Cam (1960). We may compute likewise dy(L(X),L(Y)):

dg (LX), L(Y)) = max{ [I-p-e|, 1- (1 + M)e™}.
Lemma 5. Let y=-log(l-p) and let A,(p) be defined as Lemma 3 (for O<p<e™).
Let also A (p) be defined as the unique positive root of the equation (A + 2)e~*= 2- p.
Then :
1) Ify <A<A(p), or A> A(p), or p 2 el and A> v, then
d(LX),L(Y)) = 1- A+De™ > 1- (y+ De?.
2) A p) <A < Ay(p) and O<p<el, then
dgLX),L(Y) =1- p-e* 21- (A+1)e >,
3) If A(p) < A < v, then
d (LX), L(Y)) = 1- (A + 1)e>.
4) If 0 < A< A(p), then
dLX),L(Y))=e*-1+p.
This covers the case A = p, for which we have d(L(X),L(Y)) = eP- 1-p.
5) Inall cases
infy, d(L(X),L(Y)) = 1- (A(p) + 1 )exp(- A((p)) < eP-1+p <2 p?.

The result of Lemma 5 was obtained for A = p by Daley (1975, see e.g.
Serfling (1978)).

We shall now specialize in the two following cases:
A) A=p. Inthiscase, we note that

P(X=0)=1- p < p(Y=0)=e® and P(X=1)=p > P(Y=1)=pe?.
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It follows that one can easily construct X and Y on the same probability space,
by setting: Y = XZ, where Z is independent of X and such that

P(Z=0) = (P(Y=0) - P(X=0)) / P(X=1) = (?- 1+ p) / p,
P(Z=k) =P(Y=K) /P(X=1) = (p*1/kl) e? (k=1,2,..).

For such a construction, we have
P(X#Y) = P(X=1) P(Z#1) = p(1-eP) = d(L(X),L(Y)).

We see that the coupling betweem X and Y is then maximal in the sense that the
upper bound d(L(X), L(Y)) < P(X#Y) isreached.

For this same coupling, we have

max{P(X <Y), P(X>Y)} =max{P(X=1) P(Z 22), P(X=1) P(Z= 0)}=
max{eP-1+p, I- (p+ 1)eP} = eP- 1+ p = dp(L(X),L(Y)) .

We sum up these results in

Lemma 6. For the contruction above, we have d(L(X),L(Y)) = P(X2Y), and
dg (L(X),L(Y)) = max{P(X<Y),P(X>Y)} = P(X<Y).

B) A= vy = -log(l-p). Inthiscase, we have
P(X=0)=1-p= P(Y=0) = e, and P(X=1)= p>P(Y=1) = ye™.

It follows that one can easily construct X and Y on the same probabitility space by
setting: Y = XZ, where Z is independent of X and such that P(Z=0) =0 and

P(Z=k)= P(Y=k)/p(X=1) = (yk/pk!) e (k=1,2,..).
For such a construction, we have

P(X#Y) = P(X=1) P(Z#1) = p(1- (y/p) e") =
p-yeV=1- (y+1)e? = dL(X),L(Y)).
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We also have here P(X<Y) = 1, and hence
P(X<Y) = P(X#£Y) =1- (y+1) eV = d(L(X),L(Y)), P(X>Y)=0.

We sum up these results in:

Lemma 7. For the construction above, we have d(L(X),L(Y)) = P(X2Y), and
dg(L(X),L(Y)) = max{P(X<Y), P(X>Y)} = P(X<Y).

Proof of Theorem 2. Using any of the constructions obtained in Lemmas 6 and 7,
we define X; and Y jointly fori=1,...,n, and let T, = Y,+..+Y, . We have then

d(L(Sp),L(Ty) < P(S,#T,) < 1- II; P(X;=Y)),
which proves Theorem 2.
Proof of Theorem 3. We have likewise
dg (L(S,),L(T,)) £ max{P(S,<T,), P(S,>T,)}.
Taking any one of these probabilities ( for instance P(S <T,)), we have

P(S,<T,) = 1- P(S,>T,) <1-I[; (1 - P(X;<Y)).

REMARK

By using a direct method, the result in Theorem A obtained originally in
Deheuvels and Pfeifer (1984) for p = p, = ... = p, has been extended to cover the non
i.i.d. case under weaker conditions as those of Corollary 2.
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