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An estimator of the standard deviation of the first derivative of a stationary
Gaussian process with known variance and two continuous derivatives, based on
the values of the relative maxima and minima , is proposed, and some of its
properties are considered.
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Estimacion del Momento Espectral Basado en Valores Extremos
Se propone un estimador de la desviacién tipica de la derivada de un proceso
gaussiano estacionario de variancia conocida, basado en los valores de los extremos
relativos del proceso, y se estudian algunas de sus propiedades.
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1. INTRODUCTION
The mean frecuency 7y of a centered stationary Gaussian process {X(t), te R}
is defined by ¥*= A,/ Ay, where A; = J ., AMdF(A), i=0,2, and dF is the
spectral measure related with the covariance

I(t) = EX(0)X(t) by T(t) = [ e eet dFQ).

We shall assume that X has a.s. a continuous second derivative X®. The
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variance A, = I'(0) = Var X(t) will be assumed to be known, and, with no loss of
generality, equal to one, hence

Y= A =-T"0)= E (XN(t))2= Var XO)t).
In order to estimate Y2 ory from the observation of X(t) during 0 <t <T,

"two sorts of statistics have been proposed. The first one is due to S. Rice (1945) who
introduced the unbiased estimator of 2

YAT) = T fiom X0t 1)

with variance

SX(T) = (4/T) Jiomy (1-4T) (T(1) )2t V)
satisfying
lim T—00 T Giz(T) = 4 -f [0,09) (T(t) )2dt. 3)

The other one is based on the use of the number n *(T) of upcrossings of X(t)
through the level u, with expectation given by Rice formula

E{n,/(T) } = Ty(Qn)" exp(-u¥2) 4)

(the definition of upcrossings and a proof of (4) can be seen in Cramer and
Leadbetter (1967), for instance). Steinberg et al. (1955), have proposed the use of
the unbiased estimator Y, ((T) of the parameter y , where

Yeu(T) = 2m Tlexp (u¥2) n(T), ueR 5)

The properties of (1) and (5), and their relative efficiencies for different shapes
of covariance functions, have been studied by G. Lindgren (1974). He also
proposed an inprovement of 7, ((T), namely, to select a finite number of values of u
» say Upl,,.. Uy, and to combine linearly the corresponding Yeui(T) (=12,..,p)
to obtain

’Yc(T’a) = Zi a'i'Yc,ui(T) i= 1. P (6)

with the vector of weights a = (a,..., ap) such that ¥;a;, =1, i=1,..,p. He
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deveiops in particular the case p=3, u,= - u, u,= 0,u; = u, and provides criteria
to choose the weight vector . :

As the finite value of p increases, the computation of the variance of Y.(T, a)
becomes more and more involved, and the choosing of an adequate vector weights
(minimizing the variance of Y (T, a) ) requires too much computation work.

The purpose of the present paper is to show how a simple step forward,
following Lindgren's ideas, leads to a new family of estimators, with variances

easier to compute. Let us combine the infinite number of statistics (5) with a weight
measure do such that f(_oo, oy d0(u) =1, in the form :

.[ (- ©0,00) ’Yc’u(T) d(x'(u) (7)

and notice that n *(T) ; and hence Y...(T) , are sectionally constant as a function of u
. In fact, the jumps of n.*(T) are a.s.

nu+0+(T) - n, " (T) = {-1foru e M,1foru em } (8)

with M= {u: forsome t € (0, T], Xhas a maximum ont and X(t) = u},
m= {u: forsome t e [0,T),X has a minimum ont and X(t) = u},

as it is esay to see, taking into account that the probability that two extrema have the
same value is zero.

We introduce now the function

G(u) = 2 exp(u2/2) dofu) 9)

and integrate (7) by parts:
J‘(.oo,oo) ’Yc,u(T) da’(u) = T—l (-00,00) nu+(T) dG(u)

= - T oy GW) A, H(T) = T(Z, ¢ GW) - Z, ¢, GW)).

uem
As afinal step, we simplify our estimator, by neglecting the effect of the

endpoints of (0, T), thus having what we shall call ¥y, (e from "extrema"):

%(T) = %(T,G) = T(Z, G - Z,c nGw)) (10)
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with

M= {X®): XO®)=0, XO0)<0, t € OT)},
m={X@t): XO@)=0, XO) >0, t € (0,T) } an

(Notice that M and m are essentially M N (0,T) = M |{T} and
mn (0,T)=m | {0}).

The condition ,f(_oo,m) do(u) =1 imposed to the weight measure implies that
the resulting estimator (7) is unbiased, and, since neglecting what happens at the
endpoints of (0, T) should be irrelevant for large values of T , one would expect
Y.(T) to be at least assymptotically unbiased as T goes to infinity. In fact, it turns to
be unbiased for every T, as we shall see in the next section.

When our ¥y, estimators are based on step functions G, they are almost
equivalent to Y, estimators. In general the 7, are less efficient than ¥, except for the
case of a very concentrated spectrum of I', and the same should be expected to

happen with ¥, . The advantage of either Y, or ¥, is eventually their ease of
computation.

2. EXPECTATION AND VARIANCE OF ¥,(T).

The computation of the first and second moments of %,(T) has been developped
by S. . Benzaquen (1983), with arguments similar to the ones used in Cramér and
Leadbetter (1967) to derive Rice formula (4), or in Benzaquen and Cabaiia (1982) to
obtain the expected measure of level sets in the case of d-dimensional parameter
processes. M. Wschebor (1982, 1983 a,b) has generalized those results and weakened
their assumptions in a series of papers, and his methods could be applied in our
present context to relax the assumptions. We limit ourselves to state Benzaquen's
results with a suitable notation in view of our purposes, and to add some comments of
heuristical nature to justify them, in Section 5.

With adequate assumptions on T, the estimator Y,(T) constructed from any
bounded increasing function G satisfies:

E {Ye(T) } = ¥ (27) ] o000y G(u) u exp(-u?/2)du
=-(2m)™? E(G(X(0)) X?(0)) =y (12)
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and

E{ %(T) } =2 T2 [y { (T-t) @yat)g), x0) (0,0)

E( G( X(0) ) G( X(t) ) X@(0) XO(t) | XD(0) = XW(t) = 0) }dt +

YT a0y GHW) (2)7! exp(-u?/2) y(u) du (13)
where Q) x(q i the joint density of XM(0), XM(t) and

Py,) = E(IX®0)] | X©0)=u) = PEu + vZ| (14)
with z standard normal and V2y* = TV(0) = E X®2,

Benzaquen's assumptions are that I" has four derivatives, the spectrum of - I'™

has a continuous component, I'"¥(0) < oo and J'[o’a] t1 (T(0) - Ti¥(t) ) dt < oo for some
positive constant O.

For a proof of (12) and (13), we refer to Benzaquen (1983). We end this
section noticing that, since y = Qx(1)q) E(-X@(t) G( X(t) )| X)(t) = 0) foreveryt,
and 2T'2f[0’ﬂ (T-t)dt=1, then Var ¥,(T) appears as the sum of the first integral
in (13) minus Y= (Ey.,)?, namely

2T7? I[O,T] (T-t) [ (px(l)(o), x(Wy (0,0)

E( X®(0) X(t) G( X(0)) G(X(1) )| XV(0) = XO(t) = 0)

- (Px(l)(o) E(- X(Z)(O) G(X(0)) | X(l)(O) =0) (px(l)(t)

E(- X®(t) G(X() ) | XP(t) = 0) ] dt (15)

plus the remaning integral

YRT) ] o) GA(W) Wy(u) exp(-u¥2)du (16)
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3. CHOOSING THE WEIGHT FUNCTION G.
If the covariance decays for large t; the contributions of (15) to the variance of
Y.(T) is expected to be lees important than the remaining term (16), because the
bracket vanishes for large t and is bounded even for small t, in spite of the degeneracy
of the joint density Qx(1)g) x(1) , because the conditional expectation of X@(0)X@(t)

compensates this fact. Therefore, a reasonable goal to have in mind when selecting
the function G is to minimize (16), with the restrictions

2m)! I o000 EXP(- u%/2) dG(u) =
(2) s, oey U G(W)exp(- u%2) du = 1 17)

and lim,_, +,, G(u) exp(-u%2)=0,

A variational argument leads to the minimizing function

G(u) = ku / y,(w) (18)
with the constant k chosen in such a way that (17) holds (See Table I below).

From (14) we have y,,(u) = vy, (u/ v), and a straightforward calculation shows
that y, is an odd function, and foru > 0, y,(u) = u - 2u ®(- u) + 2¢() , with
Q) = 2m)2exp(-v2/2) and D)=/, , (2 dz.

Substituting this expression in (18), we get G(u) = kg(u/|v|), with

g(u) = sgn(u) / (1-20(- [ul) + 2¢(u)/ [ul).

For such G, (16) reduces to vk / t , and we conjecture that this value provides a
first approximation of Var Y, . Furthermore, since for small t, X®(0) and X®@(t) are

negatively correlated, given X((0) = XI)(t) = 0, one should expect the actual value
of Vary, to be less than vk / T.
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TABLEI Values of k = 2x( I(_m,o‘,) u?y,"'(u) exp(- u¥2) du )! asa function of
V= ;Y-Z( EX(2)2) 12

V) k v k

2 3.1722 1.6 4.5888

4 3.2579 1.8 4.8884
6 3.3950 2.0 5.2002
8 3.5760 2.5 6.0211
1.0 3.7912 3.0 6.8855
1.2 4.0364 3.5 7.7799
1.4 43038 4.0 8.6956

4. COMPARISON WITH RICE INTEGRAL ESTIMATOR AND NUMERICAL
TEST OF THE CONJECTURE IN § 3, FOR PARTICULAR COVARIANCES

In order to compare the performances of our estimator and of %;, we supply in
Table II cetain indicators corrresponding to some covariance functions, all of which
have I'(0) =-T"(0) = 1, namely

T'(t) = exp(-at?/2) cos(bt) (19)
for suitably chosen a and b. The indicators are:

(i) the values of the parameters a and b defining the covariance function,
(ii) the value of k = k(v) (see (18)) which gives a first approximation of
V.= lim;_ . TVary,(T),
(iii) the value of V , available from a numerical computation of (15), to test
the conjecture that (15) is less important than (16), and negative, and
(iv) the value of Vi= ] o000 (T"(t) )*dt = lim; , ., T 62(T)4,
that is approximately equal to lim; _, o, T Var¥; (T).

The results in Table II validate the conjecture only for covariances with slow
oscillations (b <<1) and strongly decaying fort >> 0 (a >> 0).
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TABLEIl. Comparison of k, V, and V; for covariances given by (19)
(T = -T"0) = ¥= 1.

a b k vV V.

e i
0.500 0.00 4.78 2.13 0.665
0.495 0.10 4.78 213 0.665
0.480 0.20 4.78 2.13 0.665
0.455 0.30 4.78 2.11 0.668
0.420 0.40 4.78 2.09 0.675
0.375 0.50 4.78 2.03 0.690
0.320 0.60 4.77 1.94 0.722
0.255 0.70 4.76 1.87 0.782
0.180 0.80 4.75 2.03 0.897
0.095 0.90 4.73 3.55 1.164
0.08595 091 472 3.92 1.213
0.07680 0.92 4.72 4.39 1.271
0.06755 0.93 4.72 4.95 1.341
0.04875 0.95 4.71 6.60 1.541

5. SOME HEURISTICS UNDERLYING THE COMPUTATION OF MOMENTS
IN§2.

When A = { X@ vanishes a finite number of times during (0,T) and there is no
te (0,T) onwhich XI(t) = X@(t) =0 } holds, the integrals

LT = Jon I x@ <uy (- XP0)) G (X@®) dt (20)
and

12( u, v, (S' ,S"), (t'! t") ) =
Josn s Jee 1 X)) <, (0 < v 1 X(8) XOGX(s)GX()dt (21)

have derivatives
(0L,(wT)/0u) |, =

lim 50 8 Jom? exm<sy (- X)) G(X() )dt = T ¥(T)
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and, if ( §,s")N(t,t") =0,

(02, (u,v,(s', s"), (t',t"))/duadv)|

u=v=0"
(s"-8) Y ((s,8)) (t- 1) (1, t)),

as a local change of variables t — X(t) easily shows.
Taking expectations in (20) and then differentiating, it follows that
dETL(u,T)/0u o = o1 Pxy(0) E(- XO(t) G( X(t))IXD(t)= 0)dt

Where (px(xj(t) denotes the density of X1)(t) . If the derivative can be introduced under

the expectation and A holds, (12) is obtained. The analogue, starting from (21),
leads to

02 EL(u, v,(s', 8"), (t't") )/ duov | ,_y_,=
j(s‘,s") ds J‘(t',t") Px(D)),xD(0,0) E( XA(s) XA(t) G(X(s)) GX(V)) |
XM(s) = XO(t) = 0) dt (22)
and, again, if the derivative can be taken inside the expectation and A holds,
E(s", s)Y.( (s, s") )(t"- t' ¥.( (t,t ")) is equal to (22). All those expressions are

additive functions of the rectangle (s', s") X(t', t") , so that we can conclude
(excluding points in the diagonal because of the requirement (s',s")N(t',t") = ¢) :

T?E(Y(T) - Zie yum G*(O)) =
Jomds]iom®x xO(O.OEXA(S)XOWG(X(s)GXB)IXD(s)= XD(t)=0)dt=
2l 0m(T- DOxh(e) 10 (O,OEXAO)XAGX(ONGX(B)XDO)=X (1)=0)dk.

In order to have (13), it remains to compute the expectation of X\, ,.GX(t).
This is accomplished by replacing in (20) - X@(t) by | X®(t) | and G( X(t)) by

G?( X(t) ), thus obtaining

EZ et om GHT) = [om@x0(0) ECIX@®)] GH X)) | XO(1) =0) dt
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and hence
T2EZ c mom G2(t) = T! 2r) 12 y1 E(|X@(0)] G2 X(0)) =

T2y [ o E(IXO(0)] [X(0) = ) G¥u) (270 exp(- u?/2) du.
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