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Introduction

The purpose of this paper is to study the asymptotic choice between
two models {F(x|x), ae 4 = R} and {G(x|f), feB< R}, A and B
being intervals but such that for (o, fo), and only for this pair, we
have F(x|ao) = G(x|Bo).

As examples considerer the models with distribution functions
F(x|o) = x* (0 < & < +00) and G(x|f) =1 — (1 — x), (0 < B < +0)
on the support [0,1] which coincide for the uniform. distribution
(20 = 1, Bo = 1) or the models with densities f(x|o) = ax*~le=* (Wei-

1
bull distribution) (0 < o < + o) and g(x|f) = — xP~1le=* (gamma dis-

r'(p)

tribution) (0 < f < + o0), on the support R, which coincide for the
exponential distribution (ae = 1, fo = 1).

In the sequel, as it happens in the examples, we will suppose that
exist densities f(x|«) and g(x|ﬁ) with respect to Lebesgue measure —this
can be extended to densities with respect to other measures, as the
counting measure, with possible randomization. For notational simpli-
city we will use the index 0 to denote the restriction of functions at
o« = ag, f = Bo or (a, B) = (o, Bo)-

We will have to consider different alternatives as ay or o can be
border points of A or B or interior points.
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We will only analyse the cases a > ap, f = o (analogous to one-
sided tests) —the case oy = a, o = B being dealt with by symmetry—
and (xo, Bo) an interior point of A x B (analogous to two-sided tests);
mixed situations can be dealt with in the same lines.

The technique used is a sequence of two tests: first to test if (a, f) =
= (a0, Bo), owing to the singular situation of this pair and, after its
rejection, to test for F (with o # ap) or for G (with  # Bo).

1 _ 1
In one-sided tests the statistics p, = —Z7p(x;) and g, = —Z%q(x;),
n n

for the IID sample (x, ..., X,), are fundamental as well as for the asympto-
tics of two-sided, tests shere

_ 0 log f (x|o) and  g(x) = 0 log g(x|B)

p(x) 2 . op .

A first example on a different, but similar, context can be seen
in Tiago de Oliveira (1981) where the pre-history of the methodology
presented here was develloped for two (or three) models which could be
integrated in an over-all one-parameter model (0) such that o, > 0
and 6 = « if the model was F and 6§ = —f if model was G; obviously
p(x) = —g(x). Note that the simpler methodology used in that paper
can be used (locally) only if p(x) = —g(x).

Note that if, instead of the parameters a and S, we had used
o =oag + ale — ap) and B = By + b( — Bo), a,b > 0, the functions

1 |
p(x) and g(x) would be substituted by — p(x) and Bq(x). As the para-
a

meterization is not univoque, we will from the beginning «standardize»
the parameters o« and f supposing that the variances of p(x) and g(x)
at 0 are equal to 1, otherways the equality of some derivatives would
have no meaning at all, depending on the coefficient of the linear
transformation used. This amounts, pratically, to substitute everywhere
p(x) and g(x) by its standardized version. Remark that instead of im-
posing the equality of probabilities and derivatives we can substitute
them by the condition that they will be in some (convenient) ratio.

As a final remark, we note that we will suppose that 1st and 2nd
moments of p and g do exist always.
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Statistical choice for the one-sided case

Let us denote by £ r(x|a), Lc(x|f) and £ (x) the likelihoods
Lr(x|e) = T f(x;|r)
1

Za(x|p) = 1 g(x,|B)
1

and
£ o(x) = Lr(x|og) = ZLo(x[Bo)

Let us denote by A, Ar and Ag the acceptance regions for
O(x = a9, B = o), for F(a > a) and for G(B > Bo) and by P,(X|¢) the
probability of deciding X(0, F or G) if the parameter is &(0, « or f). The
significance level of the decision will be w, = 1 — P,(0|0) - 0. The pro-
babilities for the first step of decision are (with a clear notation)

r»

P,0[0) = | Zo(x)
JA,
P,(0lo) = 2L (x]|o)
and dPAo
P,0p) = | ZLa(x|B)
JAy

where we are dealing with standardized parameters. If we impose

P,0[0) =1 — w,

_P,(0}B)
o P

2P, (0]x)

= min
Ja

0

we obtain the conditions

J‘ go(X)=l—W,|
Ao
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f .Z’O(x)[z plx;) — ) Q(Xi)] =0
Ao 1 1
J £ o(x) Y, p(x;) = min
Ao 1
which by the Neyman-Pearson theorem leads to the region
Ao:(1 — By) Y. p(x)) + Bn Y q(x;) < Ay,
1 1

where A, and B, are to be determined by the integral conditions above.

Once obtained Ay, let us search the regions Ar and A (Ar U A =
= A%, Ar N A¢ = ¢) from which we will decide for F (with a > ag)
and G (with f > Bo).

We have
P,(Flo) = f &L r(x|o)
and .
P,(G|B) =j Z6(x|B)
Ac
Imposing

P,(F|0) = P,(G|0)

(i.e., splitting in half the significance level = misclassification error at
0) and the equal rates of deviation at 0 to be maximum we have

OP,(F|a)
do

_ P.Gp)
o dp

0

we get the relations

f ZLox) = | Zox)
Ar Ag

f Zo(x) Y p(x:) = J Zo(x) Y, g(x;) = max
Ar 1 Ag 1
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But as

j ¢(x) = j ¢(x) — J &(x)
A Ab Ar

j gO(x) = Wn/2
Ar

we get finally

J Zo(x) Y q(x:) =
A 1

[

j go(x)l:z p(x;) + Z ‘I(xi):l
Ar 1 1

—J & o(x) Z q(x;)
Ao 1

J £ o(x) Zp(xi) = max
Ar 1

By the Neyman-Pearson theorem we get
Ar:(1 — D;)Zp(xi) — D, ZCI(Xi) > C,
1 1

restricted to the region A%; Ag is defined by its complement in Aj.
Recall, once more, that we are using standardized parameters in the
formulation.

Let us now consider the asymptotic determination of 4,, B,, C,
and D,. Let py(«), a2(a), pB) and oZ(p) denote the mean values and
variances of p(x) and g(x) with respect to F and G; with respect to
F(x|oto) = G(x|Bo) we know that p,(00) = 0, py(Bo) = 0. The use of stan-
dardized parameters amounts to substitute p(x) by q(x)/o,(ao) and
q(x)/a4(Bo) in the previous formulation when we intend to maintain the
usual parameter as we will do. We will denote by p the correlation
coefficient of p(x) and g(x) with respect to F(x|oo) = G(xlﬁo).

1 J
Then it is well know that, with p, = - p(x;) and g, = - g(x,),
n h

by the Central Limit Theorem we know that <\/r_1 l()" ) ﬁ :1/; )) is
Gp\0o ga\Po
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asymptoticaly binormal with standard margins and correlation coeffi-
cient p its density being denoted by N'y(.,.).

For the asymptotic determination of A, and B, let us, then, consider
the auxiliary random variables

o p(%o0) O'q(ﬁo)
’7 = ﬁn _ qn
" o(oo) Uq(ﬁo)

Cn

The random pair (&,, 17,), at 0, is asymptotically binormal with mean
values zero, variances

V(&) = [(1 — By)? + B2 + 2pB,(1 — B,)]/n
V) = 2(1 — p)/n
and coefficient of correlation

, (1-2B)JT=p

/2T =B’ + B + 2pB(1 = B,)

P

using the asymptotic results as exact, the integral conditions

f go(X)=1—W”
Ao

1

ap(@)  04(Bo)

J Z4x) Y. p(x:) XIZQ(M)
Ao

can be written as

1 " ( én r"l )
— N, | ——, =0
-L@WJWMJWW P\IVE) V)

f M N( én M >=0
t<aim JVEI SV " \YVE) Vi)
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If N(.) denotes the standard normal distribution function those
equations can be written

N AwnJ V() =1 — w,
J J NN ;;(‘—5":, —:n—l':> =
< Aynd - JVE) V()

N(A/nJVEN) = 1 = w,

J p' E.__N( _é_> =0
EaS An/n \/V(én) \/V(én)

or

The 2nd equation leads to p° = 0 or equivalently B, = 1/2 as p # 1
1+
and the 1st one to A4, = _§£ ﬁN‘l(l — w,). Thus A is defined by

2
2(1 N~ (1 —w,) =
ﬁ(“p(ao) a.,(ﬁo)> = VAHL+ AN =)

Evidently, from the computational point of view, we can multiply
by n, passing to sums and leading to

ZP( i)+ ZQ(x;) < V21 + pnN~H (1 — wy)

1
P( q(ﬁo)
As the conversion to sums is inmediate we will not return to it
and maintain the use of averages which is more intuitive. Let us finally
determine Ar = Aj.
We have the integral conditions

f -go(x) = Wu/2
Ar
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Z p(x) Y q(x:) Z q(x;)

& ! ) = _J
f o < o0 | oo 4o Lo a4Bo)

Z p(x;)
J &L o(x) - = max
Ar OP(aO)

so that

; p(x;) Z q(x;)

Ar(l = D)—— —D, X >
O'p(fxo) aq(ﬁO)

Let us show that if we take D, = 1/2 and C, = 0 we get a solu-
tion, when we use the asymptotic normal approximations. Let be

and 7, = \/71 o )' the proposed region Ap(< A$) is
q 0
&n = 1. Recall that A, is symmetrical in (£, ). We have

j ZLolx) = J nN' (&', n')
Ar {&=2ntnAs

J nN (', &) = J nN (&) =
{&=2n}nAg {&2ninds

~ f ZLo(x) so that f Lox) = w,/2
A Ar

In the same way we can show that

Z p(x;) Y g(x:)

L o(x)
j Zolx) 0‘0) f(,. o) Gq(flo)
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Thus the result is

Pn qn 2(1 +
P, 4 </( P N1t — w)

® o(a0) | 4Bo) n

. 4C ] ﬁn aﬂ
Ar:do n {O'p(“o) > O'q(ﬁo)}

e P L n }
Ac:Ao () {O’p(ao) = 54(Bo)

Let us now consider the example F(x|a) = x¥(1 < a < + ), G(x|B) =
=1—-(1 —x)f(1 < B < 4+ ),0 < x < 1 which coincide for ag= =1
F(x|1) = G(x|1) = x). Then we get p(x) =1 + logx, g(x) =1 + log
(1 — x), 6%(1) = g%(1) = 1 (the parameters are naturally standard) and
p=1—n%6 = —0.6449341.

We have thus:

Ag:2n + ilog [x(1 — x)] < 2/T = 2%/12/nN"1(1 — w,)
1

and

A,-:Aﬁ;ﬂ{Zlogx, Y log(l — x;) }
1 1

and
Ag:A5 N {Zlog x; < Zlog(l - x,-)}
1 1

Note that if ¢ = —p we have p' = +( (if B, # 1/2) so that we can
not conclude that p’ = 0 because of the singularity of the binormal
density.

Let us consider now this case. There we have only one family of
distribution functions {M(x|f), 6 A = R} where the interior point
0o € A is such that for § > 6, we have one type of models and for
0 < 6, another*. This is the case for the distribution of maxima under
von Mises-Jenkinson formula

M(x[p) = e~ (14007 . g R

* It may be useful to recall that to imbed two alternative models coinciding for a, and S,
it is only possible if —p(x) = g(x); as seen. But if this happens the general model M(x|f) =
= F(x|oo + 0) if 0 > 0, M(x|0) = G(x, Bo — 0) if 6 < 0 is a convenient form of local imbedding.
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which for 6 = 0* = 0~ leads to Gumbel model, for § > 0 to Fréchet
model and for 8 < 0 to Weibull model. For more details and com-

plements see Tiago de Oliveira (1981).

The technique of analysis used before could follow closely the cited
paper. We sketch the proof in the lines above, now.

Let £ (x|) be the likelihood [# o(x) = £(x|0)] and suppose we want
to decide in the trillemma 6 < 0, 6 = 0 or § > 0. Denoting by P,(X|6)
the probability of deciding X, which way be (—, 0, +), for the value
0 of the parameter, we have then

P,(0/6) = J 2(x/6)
Ao

and P,(A.|0) = f Z(x|0) for the probability of deciding > 0 if the
A

parameter has the value 0.
Then the conditions are

P,,(A+|0) = w,/2
and

dPn(A + Ie)
g o

= max

which by the Neyman-Pearson leads to
Zp(xi) = An
1

or equivalently \/np, > A,. A, is evidently given by the 1 — N(4,) =
= w,/2.

Evidently 4_, implying the decision that 6 <0, is given by
J"pn < B, = — A,
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Statistical choice for the two-sided case

Let us, now, suppose that (o, o) is an interior point of 4 x B < R2.
The conditions are, evidently,
P,,(0|0) =1-w,
dP,(0|a)
do
dP,(0|p)
dp
2P,(0]o)
do?

or, equivalently,
f‘

0

0

_d*P,(0p)
o dp?

= min (<0)
0

go(X)=1—Wn
UAO

r

-C[o(x) z p(xl) =
1

v Ag
"

Zo(x) ) q(x;) = 0
1

dAo

r

n n 2 n n 2
,Sf’o(x)[z pa(xi) + (Z P(xi)> - z qa(x;) — (Z Q(xi)> } =
1 1 1 1

J Ay

r

n n 2
=4 o(X)<Z p2(xi) + <Z P(X.-)> ) = min (<0)
J Ao 1 1
02 log f'(x|a) 02 log g(x|B)
———> | and ¢ox) = —————
(70(2 0 0ﬁ2
The Neyman-Pearson theorem leads to (recall that we suppose for
simplicity o,(0t0) = a,(Bo) = 1).

where, as before, p;(x) =

0

Zpl(xi) + (n-ﬁn)z {Z I’z(xx) + npn)2 ZqZ(xz) - (nqn)z}
1

+Bnnpn + Cnnqn + D"
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Dividing by n? and supposing the mean values of p,(x) and q,(x)
to exist, by Khintchine theorem, ;Z::pz(x,-) and ;Z::qz(x,-) converge
to them and we get, for large values of n, the region

Ao:(1 — A,)pn + Angs < Dy,

where, by symmetry, we take A, = 1/2. As we supposed o p(00) = 0,4(fo) =
= 1, the region, in general, is defined by

-2 =2 =2 =2
o' 2p" I 5 < 2D, or n( p;, an ) < 2nD, = D,
op(@0)  o4(Bo) ap(e0) . 05(Bo)
Introducing, once more, the standard variables
Pn Gn
¢, = Jn and 75, = /n
\/— o p(%o) f o4(Bo)

the region can be written
A:E2 +n2 <D,

and, by symmetry, the conditions
ﬁ ENL(Em =0
Ao

ﬁ nN'y(&n) =0

Ao
J (&> = n*)Ny(&n) =0
Ao

approximations to the corresponding conditions for the exact A,, are
used.
The value of D, is computed through

ﬁ Ny&n=1-w,
Ao
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Let us, now, determine Ar and Ac(Ar U A = A5, Ar N A = ¢).
Ar and A may be defined by

P,(F|0) = P,(G|0) = w,/2

dP,,(F|a) _ dP,,(GIB)
do 0 - dp 0 -
dzP,,(F|cx) dZP,,(G|/3)
= = max
da® o dp*> o

Using the Neyman-Pearson theorem and the asymptotic approxi-
mation, in the same lines as before, we get

B &

a@0)® "o Bo

/ip:{u — A)) " > D.’.} N Ag

Let us show, also, that 4, = 1/2, D, = 0 is a solution, that is

LN

ap(d0) ~ 04(Bo)

/IFZAS m {
We have

y Ny n) = j No&n =J N ) = J N,(&m)
Ar (€210 45 (>N 4 A

so that as

P,(Ar|0) = P(4s0) and P,(Ar|0) + P(Ac|0) = P(A5|0) = w,
we get P(AF|0)  w,/2 and P,(Ag|0) > w,/2.

Also f EN(&m) =0=| nN,(&n) by symmetry and
AF

Ag

ﬁ (& +n)Ny&m — | ENYEn) =
Ar Ao

- f CPNE ) — f EN(E 1) = 0
Ar Ac

and the remnant of the equation converges to zero.
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Evidently Ag is defined by

Z
<

ap(ao) aq(BO)}

fi'(; Ato ﬂ {
For the example we have

ln 2 1" 2
Aozn{(1+—210gx,~> +<1+—Zlog(1—xi)> }SD,,
n, n,

|
!

In case we wanted to deal with the statistical choice betwen the
Weibull and gamma distributions, with densities:

- 1z 1.
AF:A%ﬂ{ll +—Zlogx,~ > ‘1 +—Zlog(1 — X;)
n n

- I 1z
AG:A%ﬂ{ll + - log x; <‘1 + =Y log(l — x;)
ny n-y

B 1
fxlo) = ax*"'e™ and g(x|f) = —xF"le™* ; x4, >0

L(p)

which coincide in the exponential for « =1 and f =1 we have

pix) =1+ logx — xlogx
q(x) =y + log x

o¥(1) = n%/6 + (1 — 7)?
c2(1) = n?/6

and

p = !

2 n2+(1 o
._X - —
Ve N6 ’
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