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Abstract

We consider here a multivariate sample X; = (X ;> - >
> X, 1 £j = n, where the X;, 1 £j < n, are independent i-di-
mensional extremal vectors with suitable unknown location and
scale parameters 4 and J respectively. Being interested in linear
estimation of these parameters, we consider the multivariate sam-
ple Z; 1 = j < n, of the order statistics of largest values and their
concomitants, and the best linear unbiased estimators of 2 and o
based on such multivariate sample. Computational problems asso-
ciated to the evaluation of u{™ and Z{", the mean value and the
covariance matrix of standardized Z;, 1 = j = n, are also discussed.

1. Second order structure of the order statistics and their concomitants
in an i-dimensional extremal model

1.1. PROBABILISTIC SET-UP

Let {X:}-,,;, be a stationary sequence of random variables (r.v.’s) and let
M, be the i-th dimensional random vector (M%), .., M\,"), where MY is the
j-th largest order statistic (0.s.) of (X1, ... X3), 1 =j <i,n =i, i a fixed integer.

Under certain weak conditions (Gomes, 1978, 1979) it is possible to show
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that if there exist normalizing constants {a,},> (4, > 0) and {b,},>, and a
non-degenerate distribution function (d.f.) G(x) such that

lim P[M{" < a,x + b,] = G(x)

n—

for all x in the set of continuity points of G(.), then

lim PI: () M, < anx; + bnj| =

n—x ji=1

\
N i1 G( min xk) AL
. 1SkS)
G( ‘.) __"l‘ )

DREDY log Nrjer =)l (rr =0) (L1)
ri-1SrSj—1j=1 G< . )
min \k

1Sk<j+1

where, according to Gnedenko’s theorem, G(x) = exp (—(1 + 0x)7'Y), xe R,
1+ 0x>0(f 0 =0, we get G(x) = exp (—exp(—x)), xe R, Gumbel’s d.f.).

A random vector of dimension i with joint d.f. given by the right hand-
side of (1.1) is called an i-dimensional extremal vector.

1.2. STATISTICAL ASPECTS

The results previously mentioned become important in many practical
applications involving extremes. Indeed, one of the drawbacks pointed out
to Gumbel’s approach to statistical inference using extrema is the wasting of
information by only considering the maxima of groups of observations, though
generally records of the top few o.s. are available. It is then of interest to
develop inference techniques for dealing with multivariate samples (X, ..., X»)
of independent random vectors with d.f. given by the right-hand side of (1.1)
and x, replaced by (x, — 4)/0, | £k = i, where £ and J are a location and a
scale parameter respectively to be estimated from the sample (for a similar mo-
del, see Weissman (1978)).

1.3. LINEAR ESTIMATORS OF THE UNKNOWN PARAMETERS.
CONCOMITANTS

Let us consider the multivariate sample (X, ..., X,) of indepent random
vectors, where X; = (X j, .., X; ;) has a probability density function (p.d.f.)

S x (X1s o Xi3 44 0) = exp(—exp (—(xi = 2)/8) — Y (xx — /l)/é)/&"
k=1

;> >x; ; 1Sj<n
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i a fixed integer. This p.d.f. has proved to be fruitful in the statistical analysis
of extremes and corresponds to the joint d.f. given by the right-hand side of
(1.1), G(.) Gumbel’s d.f.

In the univariate case the notion of o.s. plays an important role in statis-
tical methods and is clear and unambiguous. For multivariate samples no
reasonable basis exists for a full ordering of the data, but different generali-
zations of the concept of order can be made in two or more dimensions
(V. Barnett, 1976, makes an interesting critical review of the subject).

We shall consider here the ordering of the largest values (X i, X;.2,....
X 1.,)- We then do not modify X,, 1= r = n, we merely order them according
to the ordering of the largest values (David (1973), David and Galambos
(1974) consider the case i = 2 in a multivariate normal situation). We thus
get the ordered sample (Z{", .... Z\"), where Z\" = (Z'1';, ... Z\"}) and for every
j» 1=j=n, there is an m;e{l,2,..,n}—the m;'s all different—such that
Z" = X, The Z}, 2 < s £ i, are called the concomitants of the o.s. of lar-
gest values.

We were then interested in developing best lincar unbiased estimators
(BLUE) of the unknow parameters 4 and d based on o.s. of largest values and
their concomitants and so we nceded to derive the mean value u{” and the
covariance matrix Z{" of Y{" = (Z!" — 4)/8, | =j = n, where / denotes the
column vector of dimension i with all its components equal to 4.

For the case i = 1 several problems arrived in the computation of the co-
variance matrix of the o.s. of Gumbel populations. The fact that the expression
for E(Y{"™) and E(Y{"Y{%), 1 <j < k < n involve sums of terms large in mag-
nitude and alternating in sign lead Lieblein (1954) to compute such covariance
matrix only for sample sizes up to n = 6. Later on, with the aid of powerful
computers and the use of recurrence relations on the mean values, Mann (1963)
derived the coefficients of the BLUE of 2 and ¢ for Gumbel populations and
for sample sizes up to n = 25.

In our computation and in order to try to get higher precision and to re-
duce the number of independent calculations for the evaluation of ™ and
2" we have used not only direct formulas but also the following recurrence
relations (assume for simplicity that i = 2)

E((%435 ") = (nE((Y77 ")) = 0 = DE(®7)™))j

(1.2)
nz2 ; 1£jsn—-1 ; r=12
E(}r(";+1 7 m+l — (HE(Y{” lly(n—lb) (m —I)E(K(";Y;("lnﬂ) _
— (n — mE(Y, Y, "))
(1.3)

(rs)ell,2}X{1,2) . n22 ; 15 , m=n-—1

if r#s or 1Sj<m=<n—1 if r=ys

131



For the mean values p" there are no special problems on the accuracy of the
results. The same happens for variances. However, even the initial values needed
for the computation of the non-diagonal members of XY’ are cumbersome
and usually involve the computation of sums of the type

22 /f1 (— 1)/}] m
A(By — mym + s
g <'") mp + Qs — P2 e A8)

pz0 ; g0 if p#0 or g=21 if p=0 ; s20 ;

lfzglﬂgfxzifllgo

where A(j, k) is given below in 2.1.

In the computation of such covariances FORTRAN IV double precision
was incorporated throughout the main program and associated sobroutines.
The constants were read with the maximum possible machine precision and
Spence’s integral was computed with 22 correct decimal figures.

In the computations we have used two different algorithms:

Algorithm 1: Using direct formulas for mean values, variances and covariances.

Algorithm 2: Using the recurrence relations pointed out, with the respective
initial conditions.

In the ICL1906 both methods were run, the first one being obviously much
more expensive than the second one. For i = 2 the following checks were
made:

n n

@@ Y Y Cov(Yi" YP,)=nVar((X;; — 4)/8) = ny'(1)
j=1m=1

(b) T Cov (Y Ym) = n Var ((Xa, — 4)/8) = ny'(2) (1.4)
j=1m=1

n

(C) Z Z Cov (Yl(,";, Yz(",),,) = n Cov ((X1_1 — /1)/(3, (XZ.I — /:)/5) = m/l'(2)

j=1m=1

where y(.) is the digamma function, y/'(.) its derivative.

Using algorithm 1 the two sides of (a) agree up to 21 decimal figures for
sample size n = 2, but the number of matching figures decreases rapidly as
n increases, and for n = 15 the two sides agree up to 10 decimal figures.
Using algorithm 2. and for n = 15 we still obtain an agreement of 19 decimal
figures. Both algorithms are equivalent in respect of checks (b) and (c), the
agreement being up to 9 decimal figures for n < 12 and up to 8 decimal
figures for 12 < n = 20. However, for n = 15 we get a negative determinat
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of the covariance matrix using both methods, which shows that the accuracy
is not enough for further computations.

We then have run the second algorithm in the CDC 7600 (description of
the program provided below). The agreement between the programs run in the
two computers is the following: for n < 10 we have got an agreement of all
eight decimal figures printed, for n = 10 we have an agreement of at least 7
decimal figures and for n > 10 the number of matching figures decreases ra-
pidly as n increases, the agreement being of only 3 decimal figures for n = 15.

In the 7600 the two sides of (a) agree up to 27 decimal figures for n = 6,
26 decimal figures for 6 < n < 12, 25 decimal figures for 12 <n <15 and
24 decimal figures for 15 < n = 20. The two sides of either (b) or (c) agree up
to 13 decimal figures for n = 12 and up to 12 decimal figures for 12 < n = 20.
Up to n = 20, the results obtained, for the covariance matrix of the o.s. of
largest values only, agree with those given by White (1964). However, even
in the CDC 7600 we receive a message of ill-conditioned matrix for sample
size n = 18.

2. Description of the program run in the CDC 7600

Let Y™ = (Y{",.., ;' Yo', .., ;') denote the standardized random

vector of the o.s. of largest values and their concomitants in a 2-dimen-

sional extremal model, 4’ the column vector of the mean values of Y™

and XY the covariance matrix of Y.

2.1. EXTERNAL FUNCTIONS AND SUBROUTINES

The functions needed in the evaluation of the initial values for 4% and

Y are, with 7 denoting Euler’s constant,

0.G) = (7 + log j)/i

050) = (7*/6 + (7 + log j)*)/j

Ha() = (/6 — 1 + (7 + log j — 1?)/j?
AGy k) = ((k = 020G + k) + (j0:())* — 2L(1 + kfj) + n2/6)/(2kj)
if k <j, with  A(j, k) + A(k,j) = 0,())0,(k)

AG)) = (7 + log )*/(2%)

1+x
L(l + x) = J {log t/(t — 1)}dt, Spence’s integral,
1
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¥(j). the digamma function, and
B. k) = (kAG. k) = 05() + 0. + k) — kH( + k))/k* if Kk # j

B(.j) = (y* — n%/6 + 4log 2 ~ 2ylog 2 — (log 2)* + (logj)* —
— 2log 2logj + 2y log j)/(4°)

The sobroutines involved provide

J2 .
NN IR (f) (f1Y’_kA(n, —kk+ 1)
k=ji A

i/ '
Sl(jl’jZ'ljS:' Ry, nZ) = Z (Jl:) (_ 1y3_kA(n1 - k’ k + 1)/(”2 - k)
k=j

J2 £ )
S:Z(jl’jlaj& '11,”2) = Z (]]:) (_1)]3—/\‘[/4(”1 - kﬁk + 1) + A(19n1) -
k=j,

— y01(n; — K)/k(ny — k)

and

Ia : )
S30l,j2,j3,lll) = Z (j]:>(_1}]3—k[A(’,‘l fand k.k + 1) +
k=jy

+ A(1,ny) — y01(ny — k)/k

2.2. EVALUATION OF u’ AND ZY"

The development of this evaluation is made in the following sieps:

Step 1: Computation of the functions 0,(.), 0,(.), H(.), A(,.), ¥(.) and B(,.),
described in 2.1, for suitable values of the arguments.

Step 2: Computation of the initial mean values

E(Yim) = n0i(n), nz1, E(Y(M))=nbn), nzl

E(Yim) = n(y — Oun))/fn — 1), n>1, E(Y3")?) = n(n?/6 + 7y —
—0y(n)jn—1), n>1

E(Y{MVit)y = nd(l,n — 1), n>1

E(Ym yimy = ik — 1)(Z)S(O,k ~2k—2n—1), l<kSn
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and, with  D(j) = B(1,)) + B(, 1),

HW”WLJ%—1(>U~W2mn—U—B(k«lk—ln—m

if l<k=Zn

(mk—n(v[nmk—zk—zn—Ln—m—

— (= 1)}F72D(n — 1)/(n — 2)] + n(n — 1)(y> — 24(,n — 1)/
An =2)n—k) if 1<k<n
—n(n — 1%y + Y(n — 1)) /(n — 2) +
E( (n)Y(n) =j —l—n(n— 1)[52(1,n—3,n—-2,n— 1,n——2)+
+((1 = 90i(n = 1) — (1 —y) +
+ 2((y + ¥(n — D)A(l,n — 1) + D(n — 1) —
—(=1)""*D(n — 1))/n - 2) +
+(240,n = 1) = y})/(n—2)*] if k=n>2
(=322 if k=n=2
(n(n — 1)A(l,n — 1)/(n — k) —
—Mk—DQ)MMk—lk—Zn—Ln—D
E(Y{" Yim) = if 1<k<n
nn — D[ =(y + ¥ — D)A(Ln ~ 1) —

- S10,n —3,n—2,n—1,n—2) +
+@—=1)0n—1)—Dmn—1] if 1<k=n

Step 3: Use of recurrence relations of type (1.2) and (1.3) to compute x4’ and
the mean values E(Y{"}Y{"%), 1 £j £ k < n, E(Y{"Y3"%), 1 = j, k< and E(Ys"Y3"%),
1SjSk=n

Step 4: Printing of the mean values computed in steps 2 and 3.
Step 5: Checks on the computations (see (1.4)).

Step 6: Computation and printing of %"
2.3. COMPUTATION OF BLUE OF UNKNOWN PARAMETERS

The computation of the BLUE of unknown parameters 4 and o, based on
o.s. of largest values and concomitants, corresponding to the bivariate extre-
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mal sample (X, .., X,) described in 1.3 is computationally straightforward.

The BLUE of 0 = [;J is

Ztlnl

<

3k
0* = [’Z*} = (Po(EY) " Py) P27 1 |, where
0 Z(nl

P2n = [lZulH(Z")] ; lZn

being the column vector of size 2n, with all its components equal to unity.
Weights for obtaining such estimators are provided in table 1 below, for n = 12
(for larger n, available from the author, on request).

Table 1. Weights for obtaining the BLUE of location parameter 7. and scale
parameter 8, based on o.s. of largest values and concomitants, and in a 2-dimensional
extremal model.

asl)—weight for Z{"} when estimating 2.

ay}'—weight for ZY’; when estimating 1.
by%)—weight for Z\" ; when estimating §.

by%'—weight for Z{?; when estimating §.

n i @y a5 bay bay

2 1 .200379 .341839 411444 —.051843
2 .194052 .263730 .340438 —.700039

3 1 125134 .232337 .226830 028097
2 .138753 223471 .226830 —.166856
3 .123661 156644 189158 —.558735

4 1 .090969 .174462 .153442 .040439
2 096369 .176169 182904 —.051659
3 107754 .160549 .214087 —.193865
4 .090078 .103649 127891 —.473239

5 1 071475 139146 114958 .040703
2 073889 .143108 .133306 —.012718
3 079746 138720 152803 —.086008
4 .088555 .122037 .173270 —.197474
5 070613 072711 095714 —.414553
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Table 1 (cont.)

n j al ay? byY b
6 1 058876 115476 091523 038259
2 059965 119771 .104037 .003388
3 063355 .119048 117196 —.041234
4 068406 .112586 131319 —.101854
5 075417 .096327 145915 —.193501
6 .057970 1052802 076136 —.371184
7 1 050064 098554 075847 035334
2 .050495 .102657 .084926 010759
3 .052600 .103340 .094380 —.019252
4 055783 .100698 .104449 —.057440
5 060085 .093537 115280 —.109111
6 065829 078107 126281 —.186977
7 .049120 .039131 063054 —.337531
8 1 043554 085878 .064664 .032535
2 043634 .089650 071552 .014259
3 .045001 .090903 .078667 —.007312
4 047136 .089964 086175 —.033597
5 .049988 .086456 094212 —.066965
6 053687 079144 .102857 —.112012
7 .058506 064617 111481 —.179753
8 042588 1029295 053729 —.310490
9 1 .038548 076040 056304 030014
2 038433 079466 061709 015872
3 .039346 .080935 067256 —.000889
4 .040840 080834 073062 —.019596
5 .042838 079874 079224 —.042979
6 .045379 075173 .085839 —.072619
7 .048598 067948 092947 —.112572
8 052720 .054290 099910 —.172561
9 037574 021965 046762 —.288184
10 1 .034577 .068189 049826 .027788
2 034354 071294 054182 .016506
3 034972 072819 058628 .003802
4 .036051 073152 063251 —.010855
5 037506 072321 068117 —.028172
6 1039339 .070124 .073300 —.049238
7 041610 066063 078875 —.075914
8 044445 .059030 084854 —.111828

137



Table 1 (cont.)

n j ayly aly biY by
9 048026 046172 .090606 —.165692
10 033606 016351 041367 —.269403
11 1 031351 061783 .044666 025833
2 031067 .064600 .048251 016613
3 031488 066107 051894 .006406
4 032284 066670 055662 -—.005152
5 .033375 066364 .059601 —.018504
6 034746 065112 063763 —.034278
7 036421 062680 068207 —.053454
8 038463 058582 072993 — 077716
9 .040987 051784 078115 —.110351
10 044137 039654 .082955 —.159250
11 .030389 011955 .037071 —.253327
12 1 028678 056459 .040461 024113
2 028361 059024 043465 016429
3 .028645 .060477 .046505 .008044
4 029244 061159 .049635 —.001309
5 030080 061164 052889 —.011924
6 031133 060472 056303 —.024192
7 032410 058970 059921 —.038683
8 0.33943 056427 063791 —.056289
9 035791 .052349 067961 —.078548
10 .038058 .045800 072414 —.108464
11 .040859 034325 076547 —.153258
12 027729 .008452 033572

—.239380

In table 2, we present, up to the factor 62, the covariance matrix of BLUE

based on o.s. (i = 1) and on o.s. and concomitants (i = 2). In the univariate
Hyy', " = HZY'H', where H = [1,]0,],
I, the identity matrix of order n and 0, the square matrix of order n with
all its elements equal to zero. The BLUE of 0 was then computed mainly in

situation we have obviously u

order to check the results with the ones previously obtained by other authors.
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Table 2. Cotvariance matrix of BLUE buased on o.s. (i = 1) and on o.s. and
concomitants (i = 2)

¢}/—Variance of BLUE of / (i = 1)
¢y5—Variance of BLUE of 6 (i = 1)
¢)—Covariance of BLUE of 2 and d (i = 1)
¢'J—Variance of BLUE of 4 (i = 2)
¢A—Variance of BLUE of § (i = 2)
¢3—Covariance of BLUE of 4 and d (i = 2)

DD (1) 2 (2) (2)
dy = eyiey; — ey d; = efies; — ey

n € (111) ¢ € (112) dy e (121' 57 ) € (122) d;
2 | 6596 | 7119 | .0643 | .4664 4097 | .3472 | .1933 | .1049
3| 4029 | 3447 | 0248 | .1383 2725 | .2005 | .1246 | .0391
4 | 2935 | 2253 | .0347 | .0649 2040 | .1391 | .0917 | .0200
5 2314 | .1666 | .0340 | .0374 1630 | .1059 | .0725 | .0120
6 | .1912 | .1320 | .0314 | .0242 1358 | .0853 | .0600 | .0080
71 .1629 | .1091 0286 | .0170 1163 | 0713 | .0511 .0057
8 | .1420 | .0930 | .0261 0125 1017 | 0612 | .0445 | .0042
9 | .1258 | .0809 | .0239 | .0096 0937 | .0536 | .0394 | .0033
10 | .1130 | .0716 | .0220 | .0076 0813 | .0476 | .0353 | .0026
11| .1025 | .0642 | .0203 | .0062 0739 | .0429 | .0320 | .0026
12 | .0938 | .0582 | .0189 | .0051 0677 | .0389 | .0293 | .0018
13 | .0865 | .0532 | .0176 | .0043 0625 | .0357 | .0270 | .0015
14 | .0802 | .0489 | .0165 | .0037 0580 | .0329 | .0250 | .0013
15| 0748 | .0453 | .0156 | .0032 .0541 0305 | .0233 | .0011
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