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ABSTRACT

Products of independent beta random variables appear in a large number
of problems in multivariate statistical analysis. In this article we show how a
convenient factorial expansion of gamma ratios can be suitably used in deriving
the exact density for a product of independent beta random variables. Possible
applications of this result for obtaining the exact densities of the likelihood
ratio criteria for testing hypotheses in the multinormal case are also pointed
out. For the sake of illustration, the exact null density of Wilks’A for testing
linear hypothesis in the real Gaussian case is derived. Furthermore, it will be
shown that this method is applicable also to problems of a more general
nature.
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1. Introduction

Products of independent real beta type-1 random variables appear
in a variety of statistical problems. Several test statistics for testing
hypotheses in the multinormal case can, for instance, be considered to
be products of independent beta random variables. Several such cases
are pointed out in Anderson (1958) and also in Mathai and Saxena
(1973). The exact density for the product of independent beta random



variables has been worked out by several authors by using different me-
thods. A summary of the various techniques which are applicable in
such context is available in Mathai (1973). Some of the commonly used
methods involve the asymptotic expansions of gammas in the moment
expressions and then obtain the density by inversion. In this article we
will consider a different type of expansion for gamma ratios connected®
with the moments of beta random variables. This factorial type expan-
sion is obtained with the help of ordinary binomial expansions, several
of which are available in Erdelyi (1953).

2. Factorial Expansion of Gamma Ratios

In this section an expansion of factorial type for gamma ratios will be
developed. The result will then be applied in order to derive the
exact density for the product of independent real beta variables. We
first consider a few preliminary lemmas.

Lemma 1. Let o and h be two complex numbers such that R(x) > 0,
R(x + h) > 0 and f be a positive integer, where R(-) denotes the real
part of (-). Then
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Proof. Let X be a random variable with beta type-1 density given by
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The h-the moment of X is given by
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if f is a positive integer. However, it is also true that
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when f is a positive integer. Now, taking the integral, equating (2.3)
with (2.4), and using the fact that I'(f) = (f — 1)! when g is a positive
integer, yield the result.

Lemma 2. Let o, f, h be complex numbers such that R(a) > O,
R(B) > 0, R(a + h) > 0, where R(-) denotes the real part of (-). Then
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where, for example, (a), = a(a + 1)a + 2)..{a + m — 1).

The proof of lemma 2 is the same as that of lemma 1. When f is a
positive integer in fact, the infinite series on the right-hand side of (2.5)
reduces to a finite sum and the result (2.5) becomes (2.1).

Lemma 3. Leta;, i = 1, .., k be complex numbers such that R(x;) > 0
and r;, i = 1, ..., k be non-negative integers. Let h be a complex number
such that R(o; + h) > 0, i =1, ..., k. Let a; + r; # a; + r; for all i and
J, i # j. Then
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The result follows trivially by using the simple partial fraction technique.

= a; + r; then one can use the generalized partial fraction technique
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developed in Mathai and Rathie (1971) and write the left-hand side
of (2.6) as a sum. The coefficients a;’s however, will be more compli-
cated and some of the factors will not be linear in h.

Theorem 1. Let Xy, .., X, be k independent beta type-1 random va-
riables with parameters («;, f;), i = 1, ..., k such R(og) > 0, R(f;) > 0,
i=1,.,kandoy + r; # aj + r;foralliandj, i # j, wherer;, i =1, .., k
are non-negative integers. Let ¥ = X, X,.. X,. Then the density of Y,
denoted by g(y) is given by,
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for 0 < y < 1, where
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The aj’s are given in (2.7) and the symbol (a), is explained in (2.5).

Proof. Since the beta random variables X, .., X, are independent,
the h-th moment of Y is given by
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Expanding the gamma ratios in A(h) = 1 LJ—— by lemma 2
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and taking the product, one obtains
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k
where C is as defined in (2.9). Now, writing [1 (x; + r; + h)” ' asasum
j=1
by using lemma 3, and then taking the inverse Mellin transform, the
result follows.

Corollary 1. If, in addition to the conditions of the theorem, f;, ..., fi
are positive integers, then
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The proof follows directly from lemma 1 and theorem 1.

It may be interesting to remark that if for some «; and r; any
of the factors in A(h) are repeated, then one needs only the generalized
partial fraction technique of Mathai and Rathie (1971) to put A(h)
into a sum. In this case, when the inverse Mellin transform is taken,
factors of the type (—log y)" for m = 0, 1, 2, ... will be brought in, but
the coefficients a;’s of (2.7) will then be too complicated.

3. Applications to Test Statistics

The method developed in section 2 can be applied to a large number
of test statistics in multivariate analysis. For many of these problems
the A-th null moments of the likelihood ratio criteria or a one-to-one
function of the likelihood criteria are equivalent to the h-th moment
of a product of independent beta type-1 random variables. A discussion
of the test statistics may be found in Anderson (1958), and their distri-
butions are available in Mathai and Saxena (1973). The present technique
is actually applicable to all such cases. For example, the h-th null
moment of Wilks’A for testing linear hypothesis in the real Gaussian
case has the following structure.

(3.1) E(U" = C, IPI
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where C, is a normalizing constant such that E(U°) =1, n 2 p, ¢ > 0.
This shows that U is structurally of the form

(3.2) U=X,~X,

where X, .., X, are independent real beta type-1 random variables

n i—1
with X; having as parameters o; = 57 and f5; = g fori=1,..,p
If p =2, then :x1I+ Fi # %y + 1y for vy, ro =0, 1, 2, ... and therefore

n
the density of U is available from theorem 1 by putting o, =5,

n
2
the result is available from corollary 1. If p = 3, then it is evident
that for some values of r; and rj, o; + r; = a; + r;. In this case there
will be repeated factors in (2.6) and hence the density will contain
terms of the type v*(—logu)” with « > 0 and m =0, 1, 2, ... As men-
tioned earlier, this case involves the application of the generalized par-
tial fraction technique in order to go from (2.6) to (2.8). Although
the expressions will lead to slightly complicated forms, the method is
readily applicable, and, whenever the f;’s happen to be positive integers,
one gets the density in the form of a finite sum. For the Wilks’A
it is obvious that when p = 2 one can apply many other methods
some of which are discussed in Anderson (1958) some more are available
in Mathai and Saxena (1973).
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% > Bi1 =0, = g, k = 2 and y = u. If g is an even integer, then
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