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SUMMARY

Discrete analogue of the Liouville distribution is defined and is termed as Dis-
crete generalized Liouville-Type distribution (DGL-TD) Firstly, properties in
its factorial and ordinary moments are given. Then by finding the covariance
matrix, partial and multiple correlations for DGL-TD are evaluated. Multino-
mial, multivariate negative binomal and multivariate log series distributions
are shown as particular cases of this general distribution. The asymptotic dis-
tribution of the estimates of the parameters is also attempted.
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1. INTRODUCTION

Generalized Liouville distribution (GLD) of both I and II kind, as a
multivariate distribution in xi, ..., X, with x; >0, 37 x; <1, and
Xy + ...+ xn has been discussed in Sivazlian (1981a, b). Some proper-
ties of GLD as related to Dirichlet distribution, have been given in Si-
vazlian (1981b). All of this discussion is restricted to continuous varia-
bles, x1, ..., x.. What is being done here, is to give a discrete analogue
of this distribution and this is termed as Discrete Generalized Liouville-
Type distribution (DGL-TD). By evaluating the covariance matrix of
this general distribution, partial and multiple correlations are evalua-
ted and these are checked against the corresponding quantities in the
multinomial, multivariate negative binomial (MNB) and in multivaria-
te log series (MLS) distributions. Again, in order to determine the asy-
mptotic distributions of the estimates of parameters, correlation and
covariance matrix are evaluated.

2. DISCRETE GENERALIZED LIOUVILLE-TUPE
DISTRIBUTION (DGL-TD)

Define

S() = Ag(sa)(@01)™ .. . )p0) " /x1! . . . Xn! 1)
0;>0,x,20,x,=0,1,2,...,i=1,2,...,n,0=0,+ ...+ On,
Sh=X1+...+Xn, 0=0¢0). 0<b<]1

Setting
yi=x1+ ...+ xi i=1,2,...,n 2)

it is easy to see from (1) that

A=1 / i g(z)6%/z! (3)
z=0

and from (1), we have the mgf as

m(t) = A D g@)[p(0:€" + ... + 0neM]/2! “

320



S denotes throughout this paper Y5 unless otherwise defined.
If

I xiGi—1...i—s+1) =[x, ...,x]Y ©)
i=1

we have
Elx1,...,x:® = ¢"(0s, . .., 0,)°ALg(z + ns)($0)°/z! (5a)
and
Exf] = pisi = ¢°03AZg(z + 5)(¢6)*/! (6)
where ufs; denotes the s-th factorial moment of x;. From (6), we get
s—1
(00) ‘i = 1 + ZOA [Ag(z + )(#0)*/z! (7
where Ag(z + i) =g(z+i+ 1) — g(z + i), and also
<] r r
A ZO [A'g(2)1(00)°/2! = Zo <S> pisi(—=1)°(00:) ~* (8)
z= . s=

with pfoy = 1.
From (4), we get with

B =¢AXg(z + 1)0%/z!

9
C = ¢?AXg(z + 2)0%/z! ©)
that
E(x;) = B6;
Elxi(xi — 1)] = cb? (10)
Elxixj] = c6:6;
and from (10), we have
o? = 0:(B + C8;) — B*0? an
oij = C0;0; — B*0;0;
From (11), we can write the covariance matrix § as
Q=E+ed (12)
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where E is the diagonal matrix with the diagonal elements e;; = (B +
+ C0,)8; and non-diagonal elements e;; = C0i6;, i,j=1,2,...,nand
vectors e’ = (—B6,,..., —B8,) and d' = (Bf,, ..., Bb,).

Now
Q| = |E|[1 + d'E €] (13)
and
|E| = 01,...,0,)B" (B + C9) (13a)

In the matrix E ~!, diagonal elements &; = [B + C(8 — 0,)|B0:(B +
+ CB) and all non-diagonal elements é;; = —C/B(B + C9), i,j=1,2,
.., n and hence

d'E 'e= —B*/(B + C6) (13b)
and hence
Q| = @, ...,0,)B" '[B + 6(C — B%)] (14)
and similarly
Q= En + ed! (15)

where E); is the matrix E with first row and first column suppressed
and vectors e}, d} are respectively e’, d’ with their first elements mis-
sing. We have

|Eni| = [B+ CO — 01)]B" (02, . . . ,00) (15a)

In the inverse matrix Ef;! diagonal elements b;; = [B + C(6 — 61 — 6,)]/
/BOi[B + C(6 — 6;)] and all the non-diagonal elements b;; = C/B[B +
+ C@ -0y}, i,j=2,3,...,n and hence

d\Eii'e; = —B*0 — 0))/[B + C(6 — 6,)] (15b)
and we have
|| = (02, ..., 0m)B" 2[B + (6 — 6,)(C — BY)] (16)

and from (11) we have
o =6,[B + 6,(C — BY)]. (17)

Now from (14), (16) and (17), we have the multiple correlation
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B[B + 6(C — BY)]
o _ I 18
1 — Rig,s3,..., n) B+ (8- 0)C— BZ)] [B + 6,(C - BZ)] (18)

Now similarly, we have
Q12 = Epn + exd) (19)

where E;; is the matrix E with its first row and second column missing
and the vectors

e'z = (—302, —B03, e ooy —BOn), d'z = (Bola 303 ..... Bon) (19‘1)

we have
|Eiz| = 61, .. .,0,)CB" 2 (19b)
and
Q12| = |Er2|[1 + d3E 2" e3] (19¢)
let
Cau Ci ... Con
El;l= C.31 Css . Csn (19d)
Cu Cnz ... Cmn

Using (19b), we have

Cy1 = [B+ C(0 — 6, — 62)]/BCO:0,
Ci=1/B9;, i=3,4,...,n
C=—-1/Bb, i=3,4,...,n
Ci=-1/B;, i=3,4,...,n

(19¢)

and all other elements vanish. That is, in E{3', we have first row, first
column and the diagonal elements only. All other elements are zero.
Then from (19¢) and (19e), we have

Q12| = (01, .. .,0.)B" *(C — B. (19/)
Now from, |Qi2|, |Q11] and |Q22|, we have the partial correlations as

_ 0.6:[C - BY)*
" [B+ (60— 6.)(C - BB + (8 — 02)(C — BY]

pl2.34,,..., n (20)
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plasa, ., » < 1 implies
(C— B»(0: + 62) < B+ 6(C - BY. (20a)
Equation (20a) implies
0-0,-0,<1 for multinomial.

0, +6,<1 for MNB and
@+ 60)@a—- 1)< (a—-0) for MLS.

From (18) it follows
u=B+0(C- B (200)
and
v=DB+ (- 0,)C - B (20c)

have the same sign. From p3,.34,....» = 0 along with (20c) implies

w=B+ (0 — 6,)(C — BY) (20d)

has the same sign as # and v. In the multinomial case since u = k(1 — 0)
which is > 0, it follows for this case that both v > 0 and w > 0 which
means 1 + 6; > 6 and 1 + 0> > 6 which of course is true. For the case
of MNB >0, v>0, w>0 imply respectively 0< 1, 6; <1 and
6, < 1. For MLS n >0 implies @ > 6 which means 1<6 +e~°.
Similarly v >0 for MLS implies a > (8 — 6,)/(1 — 6;) which in turn
along with a > 0 says 1 < 0 + exp[0:(1 + 6)/2(1 — 6,)] which is true.

» < 1 implies

61(6 — 6)IC — B’ >0 (20e)

.....

which is true. Note (C — B*) may be negative as in the case of multino-
mial.

3. SPECIAL CASES

3a. Multinomial
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FO) =65, . ..,8m0 — 0 Tk /(xl, ., xa!)(k = sn)! (21
0;>0, Thi<l, x=0,1,2,..., i=12,...,n

n
Sixi=sa<k, 0=01+,...,+0n
i=1

We have for this case

g@) =1/(k—2)!, ¢©)=1/1-10)

. 2la)
A=0 -0, B=k, C=kk-1)
and hence
E(6;) = ko;
o?=ko:(1 — ) (21b)
gjj = —k0i9j
1] = @1, . ..,0)k"(1 — 6)
Q1| = B2, ...,0)K"(1 — 6 + 6)) (22a)
1-6
1 - R? py = e e 23
1(23,..., ) (1 — 0 + 01)(1 _ 01) ( )
0,6
p%2.34 ..... n ]'_2'“"‘ P (23[1)

S0+ 0010+ 6,)

1 — R* <1 implies 6 > 6, which is true and p%2.34.....» < 1 implies

.....

1+6,+6,>0 (23b)

3b. Multivariate negative binomial (MNB)

Tk + snBl, ..., 001 — 0)*
Jx) = :
Ck)x !, ..., xn!
0<k<owo, 0<b:i<l, 6i+...4+6,<1,
xi=0,1,2,... i=1,2,...,n.

(24)

Now for MNB, we have

g)=Tk+2, ¢=1
AT(k)/(1 — 0), B=k/(1-0), C=k(k+1)/(1 -0 (24b)

and
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Hi = E(x;) = kﬁ,‘/(l - 0)

of = k0:(1 — 0 + 6,)/(1 — 6) (24¢)
oij = k0:0;/(1 — 0)?

Q] = 6:...,0)K" /(1 —8)"+!

Q1| = (02, ..., 0)K"(1 — 8,)/(1 — )" (24d)
of =r0i(1 — 6 + 61)/(1 — )>

and hence
1— Ris,....m=(1—0)/(1-60+6)1 - 6)) (25)
and
p2.34,....n = 0:02/(1 = B1)(1 — 65) (25a)

equations (24d), (25) and (254) chech with those corresponding equa-
tions in Lingappaiah (1982).

3c. Multivariate log series (MLS)

SO =T, ..., 00/, . .., xaD)[~log (1 — )] (26)
xi=0,1,2,..., 0<0;i<]1, i=1,2,...,n, s>0, 0<1

Here we have

=1, g@=z1 A=)=[-log(1-06)] " (26a)
B=1/(1-0)a, C=1/a(l -06)*, u=0i/a(l —0)
ot = CO} + BO; — B0}, oy = CHi6; — B*6;6, (26b)
and
Q] = @1, . ..,0:)a— 60)/[a1 — 0)]" " (26¢)
|Qi1] =02, ..., 00)[a(l —01) — (0 — 61)]/[a(] — 0)]" (26d)
ol =0:l(a — 01) — a(@ — 6,)]/d*(1 — 0) (26e)
|~ Rl a(l — 6)a - 9) @7

..... n) = [a(l . 01) _ (0 _ 01)] [(a — 01) — a(0 — 01)]

Items (26b) to (27) correspond to those items in Patil an Bildikar
(1967). Also, we have

0,0:(1 — a)?
ol m N Sl A (28)

" la(1 = 01) — (0 — )] [a(1 — 65) — (6 — 65)]
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4. ASYMPTOTIC DISTRIBUTIONS

Below, we try to find the asymptotic distributions of 6;’s. For this pur-

pose, expressions for E(8*log L/36} and E(d*log L/39:39,) are obtai-

ned in general. Then the elements of covariance matrix are given in ta-

ble I from which the asymptotic distributions can be obtained.
From (1), we have

log f(x) = —log [Eg(2)0%/2!] + Z xilog8i + sulog o + Y(x)  (29)

i=1

where J(x) is a function of xi, ..., x, only. Now,
a 0 z—-1 0 ’
D= gologf =1+ (s(@/9) — ax OV EDC I o,
Xi , ¢’
=0 + (sn)(¢'/9) — B< 1+ —(—;) (29b)

az ¢¢// ¢12
D? = L
logf= <0 > +( n)[ pe }

602
+ A’[Z2(09)°~ 'g(z)(¢ + 06")/2!)?
— A[Zz(z — 1)(09)* ~2g(2)(¢ + 0¢")2/2!

+ L2(0¢)° " 'g(2)2¢" + 0¢")/2!] (29¢)
"o g2 0’ 2

e )
2¢' + 00" ;

<f-’—¢—¢ : ) ~ E(D}) = <’g2) + HO) (29)

where

20" + 00" "2 N3
H(O) = B<_.¢ $_¢_.,,> Bg(??..._._(_b 9 > L C- Bz)< 4 > oo,

Similarly, we have

62
~E(D}) = — | H@®
(D3) <60,30, 0gf> (©) (292)
Hence, the asymptotic distribution of (6, ..., 0,) is
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f(01,...,00) = Coexp§ [ZZ(- ki H(0)> (0.—0)(0,—01)]}
i J

l

where 6;; = 1if i = jand ;; = 0if i # j and Co = {|R|(n/27)"}'/? an
[R| is given in Table 1.

Comments

As can be seen in DGL-TD, there are two places for one to choose the
functions. That is, g(z) and #(6). By the choice of these two, one can
generate a large number of distributions. This choice also includes
multivariate generalized negative binomial of Patel (1979) though g(z)

in this case is slightly complex because of b;’s. Also it includes some
of the distributions given in Sibuya et al. (1964) and Janardan (1975).

Our pur pose here is to give some general expressions for such quanti-
ties as Q, Qu1, Q2. Ries, ..., mand p12.34, ., » SO that one could easily
evaluate corresponding quantities for the distribution (1) with chosen
o(0) and g(z). Again the comments made above with respect to R%@3.... . n)
and 012,34, » also apply for section 4 where also general expressions
for |R| and V help to obtain asymptotic distribution of the estimates
for corresponding choices of g(z) and ¢(6).
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