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RESUMEN

Se considera la funcién de supervivencia desconocia S(¢#) de una variable
aleatoria 7> 0. Primero estudiamos las propiedades de S(¢) y luego, la
estimamos desde un punto de vista Bayesiano, obteniendo, bajo pérdida
cuadratica, el estimador

S(t) = [1 = pa()]Sa(t) + pa(t)So(t)
y el riesgo Bayes minimo asociado
Ruin(n) = pa(t)Rumin(0)
en donde Sn(?) es la funcion de supervivencia empirica, So(¢) la funcidn de
supervivencia a priori, Rmin(0) = V(S(¢)) el riesgo en el problema sin muestra y
Solt) — EIS*(0)]
Solt) + (n — DEIS*(1)] - nS5(:)

siendo $(¢) = S(¢) y Rmin(n) — 0. Comparamos dicho estimador con la media
C.S.

n— oo

pn(t) = 0<p() <1

a posteriori y después de ver condiciones generales bajo las cuales los coefi-
cientes, en las estimaciones Bayesianas lineales, suman uno, terminamos dan-

(*) Recibido, Marzo, 1982
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do reglas Bayes para las funciones lineales de S(z).

SUMMARY

The unknown survival function S(¢) of a random variable T > 0 is considered.
First we study the properties of S(¢) and then, we estimate it from a Bayesian
point of view. We compare the estimator with the posterior mean and we
finish giving Bayes rules for linear functions of S(¢).

Key words: Bayesian nonparametric estimation, linear approach, survival
function estimation.
A.M.S. Subject classification: 62 C 10.

1. INTRODUCTION AND SUMMARY

Let T > 0 be a random variable with an unknown distribution function
Fe &, where F is the set of all probability distributions defined over
(R, B), the measurable space of the real line with the o-field of Borel
subsets of R.

If T,,..., T,is arandom sample from F, we shall look for the Bayes
estimator of a parameter g(F), when the quadratic loss

L(g(F),d) = [g(F) - dT?

and a prior probability ® over &, are supposed.

We begin, in section 2, studing some properties of the fuction
S(x) = 1 — F(x), where F(x) is a random distribution function of a
generic random variable X.

We continue, in section 3, estimating the survival function of T,

Sx)=1-F(@), t=20

inside the set of linear combinations of S,(f) (the empirical survival
function) and So(t) = E»[S(¢)] (the prior survival function), getting
the estimator '

S(6) = [1 = pa()1Sa(?) + pa(1)So(t)

and the minimum Bayes risk

Ruin(n) = pa(t) V(S(1))
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which have good properties.
We finish showing that all the linear functions of S(¢) can be estima-
ted from S().

2. THE RANDOM FUNCTION S(x)

If X is a random variable and F(x) is a random distribution function
of X, Doksum (1974), let S(x) = 1 — F(x) be a random function.

Theorem 2.1. If S(x) is continuous is quadratic mean, g: R—=>R* U
U [0} is a nonnegative measurable function, such that

vneN j"_ngz(s)ds<oo
and if
5 (]2 Ze0sedx) (772500 dy) dO(S) < o,
then, it is
Js (]2 Ze0se dx) ( [ 2emsmrdy) des) =
= |22 [ 2202 ( [5 500S() d®(S)) dx dy
PROOF. Vn € N, if we consider the random variables
Yu= " e®Smdx, Y= [ 7g)S(x)dx

we get the result by the bounded convergence theorem, and because
Davis’ theorem.
We extend this result because of the next theorem.

Theorem 2.2. If S(x) is continuous in quadratic mean, g,: R—
- R*U{0} and g2: R—=R*U{0} are two non-negative measurable
functions, such that

vne N, j’ingl(x)dx< oo, J’"_”gz(x)dx< )
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and if

Ji (] 22080 dx) ([ 2g/(0S0) dy) dO(S) < w0, i = 1,2, j =2

then, it is

J» (I Za00s ax) (| o150 ) o) =
= [72]7 Zem0) ([, S0 d0(S) ) dxdy

Integrating by parts and using theorem 2.2, we have the next result:

Theorem 2.3. Let S(x) be continuous in quadratic mean, and let
hi: R— Rand h: R— R be two functions of X, such that theirs deri-
vates with respect the Lebesgue measure

B dhl(x2 and &(y) = d_l:;)(}_x)

are non-negative measurable functions which verify that
vneN, J"_ng,-(s)ds<oo, i=1,2
Let us suppose that

c1 = lim A1(x)So(x) — lim A;(x) <

x—oo o
and that
€2 = )}1_{1010 h2(x)So(x) — xhjrl ha(x) <
Then, if
5 (] 72180050 dx) dOS) < 0, 2.
and

Jo (222080 ax) ([ 2g;(0)S0) dy) dOS) <, i =1,2,j=i,2,
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it is
s (ff “m) dF(x)) ( [ 2 ha(y)dF( y)) d®(F) =
ci-c2—cr- jf:gz(}’)(jg S() d(P(S)) dy —
—-C Ij::gl(X)(jSF S(x%) d(P(S)) dx +
+ J.:r::j.Jt::gl(X)gz(J’)(j'iF SX)S() d(P(S)) dxdy
where F(x) = 1 — S(x).

3. SURVIVAL FUNCTION ESTIMATION

Let us thick again about the random variable T > 0 and the unknown
survival function S(¢). If the process S(¢) is such that the Kolmogorov
consistence conditions are realised, there exists a probability over the
trajectory set, which contains &. So, ® pulls out a S(¢) which may be
is not a survival function, but because a theorem of Doob (1953), there
exists a separable version of S(¢) that is a survival function. Then, @
pulls out a function S(¢) that can be «arranged» in order to be a sur-
vival function. That is why we call @ a prior probability on ¥.

We are going to estimate S(¢) following the next prior-posterior
clasic Bayesian sketch: we pull out a sample of size n; from S(¢) and
we look for the Bayes rule Si(¢) inside the set of decision rules

aSn, (t) + bSo(t).

Then, we pull out another sample of size n, and we look for the Bayes
rule S»(¢) inside the set of decision rules

aSn,(t) + bSi(¢)

We continue with the process till the k-th stage, where if we pull out
a sample of size n and if Sk - 1(¢) is the Bayes rule of the (k — 1)-th sta-
ge, we look inside the set of decision rules

aSn(t) + bSk _1(t).

In those conditions, we have the next result.
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Theorem 3.1. If S(¢) has first and second moments with respect ®
and if we follow the before sketch, the Bayes estimator of S(¢), is

S(@) = [1 ~ pa(®)IS(?) + Palt)So(t)

and the minimum Bayes risk associate,

Ruin(n) = pa(t){E[S*(1)] — E*[S(1)]} = Pn(t)Rmin(0) 4

where

_ 2
oull) = E[S@®)] — E[S*(1)]

E(S®)] + (n - DEIS*0] - nEZs@) PO

and the expectations are calculated with respect ®. Like before

E[S(2)] = So(?).

Proor. If we look for the Bayes rule $)(¢) inside the set of decision
rules like

aSn,(t) + bSo(t)
the @ and b which made minimun the Bayes risk
R = [ [JIS@) — aSu,(t) — bSHN)F dQISn ()] dP(S)
are

a=1-pn(t) and b = pn (1)

where Q[S.,(#)] is the distribution of S,,(¢) in the sample. If we con-
tinue with the process till the k-th stage we shall get the result.

From the Glivenko-Cantelli theorem we follow the next result
because

lim p.(t) = 0.

n — oo
Proposition 3.1. Whatever the true survival function S(¢) be, the
Bayes estimate S(¢) converges to it almost surely, when n goes to c and
for each t. Also, the Bayes risk (4) goes to 0.
So, we have an estimator which depends on two components, one
the prior information So(#) and the other one, the sample information
Sn(t), and when n goes to c we have only the sample information.
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We know that the Bayes rule inside the set of all Bayes rules is the
posterior mean Es()/«[S(?)], but because S,(¢) is a sufficient statistic
for S(¢), Es)/-[S(t)], where z is a particular value of Sa(¢), is also a
Bayes rule inside the set of all Bayes rules and can be considered in a
sense, like the regression curve of S(¢) on S.(¢), while our estimator
S(¢) can be supposed to be the regression line of S(¢) on Sx(f).

So, when we approximate the posterior mean by S(¢), really we are
approximating the regression curve by the regression line, and when @
is the induced by a Dirichlet process both of them are the same.

4. S(¢) FUNCTIONS ESTIMATION

First of all, why did the coefficients of the sample and prior compo-
nents add one? Has the hazard been, by any chance, graceful with us?
The answers of these questions are in the next theorem.

Theorem 4.1. Let 6 e@ be a parameter and let 7 be a prior distri-
bution on @) such that E,[0] # 0. If Ex[Ex[Xi]] = E«[6],i=1,...,n,
where Epis the expectation with respect the sample distribution, then
the Bayes rule for 8, with quadratic loss, inside the set of decision rules

G X1+ ...+ an Xy
is such that the estimations d, . .., d, add one, i.e.,
G+ ...+d:=1
Proor. We must find the dy, . .., 4, such that the Bayes risk
[ e (- axi - ... - a.X,)*dQdnr
was minimun. But the d which made minimun
f@ jx (0 — d)dQdr
is d = Ex[En[0]], so di,...,d, must be such that

GiX1 + ...+ G Xy = EZ[En[0]] = E[6]

193



and taking expectations we have that
a,\EL[0] + ... + a.E;[0] = Ex[6]
or
ai+...+d.=1
Theorem 4.1. Let S(¢) be the Bayes rule for S(¢), with quadratic
loss, looked for inside the set of decision rules
aSn(t) + bSo(t)

Let g(x) be a linear function on R. Then, there is a set of decision rules
such that g($(¢)) is the Bayes rule, with the same quadratic loss and
prior distribution, for g(S(?)), being equal the minimun Bayes risk. The
mentioned set is

8(aSn(t) + bSo(?))

PROOF. g(x) can be written like
gx)=Ax+ B
and so,

f f [8(S(1)) — £(aSa(t) + bSo(1)))* dQ d® =
=A? j j [S(t) = aSa(t) — bSo(t)]? dQ d®

which is minimun for @ = 1 — p,(¢) and b = pa(¢).

Let us observe that the theorem we have seen before can be extend,
considering instead linear functions, more general ones and using the
hyperplane representation with bilinear, etc., functions.
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