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Abstract

The class of extended PoLya functions = {¢: ¢ is a continuous real
valued real function, ¢(—12) = ¢(f) < ¢(0) €[0,1], limi~wd(f) =c€
€ [0, 1] and ¢(|#]) is convex} is a convex set. Its extreme points are iden-
tified, and using Choquet’s theorem it is shown that ¢ € Q has an in-
tegral representation of the form ¢(|¢]) = j:max{o,'l — |tly} dG(y),
where G is the distribution function of some random variable Y. As on
the other hand max (0, 1 — [¢]} is the characteristic function of an ab-
solutely continuous random variable X with probability density func-
tion f(x) = 2m) " !(x/2) " 2sin’*(x/2), we conclude that ¢ is the
. characteristic function of the absolutely continuous random variable
Z = XY, X and Y independent. Hence any ¢ € {} is a characteristic
function. This proof sheds an interesting light upon PdLyA’s sufficient
condition for a given function to be a characteristic function.
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(*) Recibido, Enero, 1982
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1. Though there exist some necessary and sufficient conditions for
a given function to be the characteristic function of some real random
variable (cf. Lukacs, 1970), eventually with atoms of probability at
—oo and/or at + o, these results seem to be, in general, completely in-
appropriate to decide whether a given function is, or is not, a
characteristic function.

On the other hand, the sufficient condition for a given real valued
real function to be a characteristic function due to POLyA (1949) —if
¢ is a continuous real valued real function such that ¢(—¢) = ¢(f) < 1,
lim; - ¢(f) = ¢ € [0, 1] and ¢(|¢|) is convex, then ¢ is a characteristic
function— is easy to apply. Observe that in the original paper of POLya
(1949) there was the assumption lim;. f(f) = 0, but this isn’t in fact
necessary: in the above statement, if lim;- . ¢(f) = c € [0, 1], there ex-
ists an atom of probability ¢ at the origin (and if ¢(0) < 1, there exist
atoms of probability (1 — ¢(0))/2 at —oo and at + ). Observe futher
that the practical interest of POLYA’s characteristic functions is rather
limited, since they correspond to random variables without finite
variance (an example of theoretically interesting POLYA’s characteristic
functions: symmetric stable characteristic functions with characteristic
exponent « less than 1).

In the present paper we put forward a new proof of POLYA’s
theorem, by showing that any POLyA function, i.e. any function satis-
fying the assumptions in POLYA theorem, admits an integral represen-
tation of Choquet’s type. In order to do so, we begin with some
preliminaries on convexity, we identify the extreme points of the (con-
vex) set of POLyA functions and, at the end, we exhibid the integral
representation refered to above. The arithmetic properties of POLYA’S
class of characteristic functions appear in PESTANA (1979).

2. We shall say that the real valued real function f is convex on an
interval [ iff

2.1 SO\t + ) < MS() + N f(t2)

for every ¢, t2 € I, A1, \2 = 0 such that \; + \; = 1.
If fis a continuous function (as it will be the case in the present
paper, (2.1) may be replaced by

(2.2) Sl + 8)/2] < [f(1) + f(12)]1/2 h,hel
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It is well known that a convex function on an interval I has lateral
derivatives such that f'(t—) < f'(¢+) for every ¢ € int (I). For further
information on convexity, cf. HARDY, LiTTLEWOOD and PdLyA (1959)
and RoBERTS and VARBERG (1973).

3. We shall say that Q is a convex set iff
3.1) XYyEQ=2Ax+ (1 —NyeQ, Ne]0,1].

Let 2 be a convex set, a € ). We shall say that a is an extreme point
of Qiff @ — {a} is still a convex set. In other words, a € Q is an extreme
point of Q iff

a=Ax;+Nx; with A, 220, Mi+N=1, x,n€eQ=>
(3.2)
= either \; € {0,1]} or x; = x; = a.

4. Let Q be a convex set in a locally convex space E (to insure the
existence of sufficiently many functionals in E* to separate points). If
Q is compact, then ex(Q2) —the set of extreme points of — is necessari-
ly non-empty (cf. PHELPS, 1966), and eventually ex(f) is itself a com-
pact set. If this is the case, it is then possible to establich the following
result:

Theorem 4.1 (CHOQUET, 1960). Let  be a convex set in a locally
convex space E. If w is compact and ex(Q) also is compact, then any
continuous linear functional L on { is representable by (or is the resul-
tand of, or is the barycenter of) a regular probability measure P whose
support is ex(f2), i.e.

4.1 L(f) = jexm) L(h) dP(h)

L a continuous linear functional on Q, with P[Q — ex(R2)] = 0.

In case the elements of @ are continuous functions f, observe that the
evaluation functional L,(f) = f(x) is a continuous and linear one, and
hence that

4.2) f0) = L) = [cxay LW dP() = [0y h)dP(),  f€Q

i.e. every f€ @ admits a Choquet type integral representation.
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5. Let C be the set
C = {¢(f): ¢ is a continuous real valued real function, such that
o(—1) = (1) < P0) €[0,1], lim~wod()=c€[0,1] and ¢(|f]) is
convex}.

It is easily shown that € is a convex set; on the other hand, the even-
ness, continuity and convexity of ¢ imply that ¢(]¢|) is non-negative
and non-increasing and that ¢’ exists almost everywhere, being non-
positive and non-decreasing.

Let E be the locally convex space of all even, continuous, real valued
real functions f, such that f’ existis almost everywhere, and let us con-
siderer the topology of uniform convergence. This topology is induced
by the countable family of semi-norms

Pa(f) = sup{|fP(x]|, n~ ' < |x| <n, i=0,1)

and hence E is metrizable; it then follows that any subset of E is com-
pact iff it is closed and bounded in E.

Lemma 5.1. C is compact in E.

Proor. It is obvious that € is closed in E. On the other hand, a straight-
forward application of the mean value theorem easily shows that

sup{|f(|x])], n~' < |x| < n, feC)

is finite for n = 1,2, ..., since 2/a is an upper bound for —f'(|x|) for
X€R—]—a,a[, Yva >0, and hence C is bounded in E.

6. It is quite obvious that ¢o(f) = 1 and ¢«(?) = 0 are extreme points
of the convex set ©— we shall, from now on, refer to them as the degene-
rate extreme points of C. On the other hand, it is straightforward to
show that if ¢ is a non-degenerate extreme point of C then ¢(0) = 1 and
lim;- ¢(f) = 0. In fact, if that was not so, we would have respectively
&) = (1 — 6(0)9=(?) + $(0)Y(#) and o(2) = [1 — lim;- o (D)) Puo(?) +
+ lim¢ - $(DO(F) with ¢ = [6(0)] "', 8 = [lim- ¢(#)] " '¢ € C, and this
contradicts the hypothesis ¢ € ex(C). In what concerns the non-degenerate
extreme points of ¢ we may further establish the results that follow:
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Lemma 6.1.
The real valued real functions
6.1) ¢a(t) = max(0,1 — |t|/a}, a>0

are extreme points of C.

Proor. It is obvious that ¢, € €, va > 0. Let us assume that there
exist ¥1, Y2 € C, A\, N2 = 0 (with N\; + \» = 1) such that

(6.2) ®a(f) = Ma(t) + May2(f)  VEER.
Differentiating we have
(6.3) da(?) = Myi(e) + Ma2yis(0)

with ¢4(|¢]) = —a ™ 'Ip, a1 and ¥4(t]), i = 1, 2 non-positive and non-de-
creasing. On the other hand

(6.4) v =N (—a™ = Nays((E])

being the difference between a constant and a non-decreasing function
is necessarily non-increasing. But if yi(|#]) is simultaneously non-
decreasing and non-increasing, we must conclude that y{(|¢]) is cons-
tant over [0, a] — and the same applies to ¥3(|¢]).

Hence Y1, Y, are linear functions over [0, a]. On the other hand,
¥1(0) = ¥2(0) = 1 and y1(a) = y2(a) = 0, and a is the least positive real for
which ¢, and ¢, take on the value 0, and this implies that y; = y» = ¢,—
i.e. ¢; ex(C). (We have discarded the possibility that either ¥, =0 or
Y2 = 0, since these are trivial cases.)

Lemma 6.2. If ¢ is a non-degenerate extreme point of C then there
exists an a > 0 such that ¢(f) = ¢.(f) = max{0,1 — |t|/a}.

Proor. Let ¢ be a non-degenerate extreme point of C,
a=inf{x R*:¢(x)=0]}. The fact that ¢(0) = 1 and ¢(|¢|) is convex
implies that there is a non-negative and non-increasing function f such
that
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6.5) o1 =1~ [\ f@w)du

and, obviously, f(u) =0, Yu > a.
Let o €]0, a[ be such that

(6.6) 1- [ fwadu>0
and let us define

_\fl@) u<a
6.7) glu) = L(u) 4> a
and
(6.8) vt =1 - [5 g du.

Obviously ¢’(J¢|) — ¢¥’(|¢]) is non-positive and non-decreasing, and
hence ¢ — y = y* € C. It follows that ¢ = ¢y + y* € C and as, by
hypothesis, ¢ € ex(C), this implies that

- (6.9) v=Np, N€[0,1]
and hence
(6.10) Y =No’ a.e.,

The fact that ¢’(u) = ¢’(u) for u > o implies that A = 1, and hence
Y’ = ¢’ a.e. On the other hand, the fact that o had been arbitrarily
chosen on ]0, a[ implies then that ¢’(f) = k (constant) over ]0, a[, and
obviously we have that k = —a~!. Hence, finally,

(6.11) é(t) = ¢a(f) = max{0,1 — |t|/a}.
Lemma 6.3. The set ex(C) is compact.

Proor. From lemmas 6.1 and 6.2 we have that

ex(C) = {¢a(?), a € [0, ]}

where
do(?) =1

(6.12) da(f) = max{0,1 — |t|/a}, O0<a<o
b(f) =0
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Let us consider the map

(6.13) T:10,0] > C
a— ¢,

Since it is not difficult to show that T is continuous, the fact that
ex(C) = T{(]0, «o]) is the image of a compact shows that ex(C) is itself
compact.

7. In view of what we have established in the previous paragraphs
the hypothesis in Choquet’s theorem are satisfied for @ = C. Hence
every ¢ € € (and in particular every ¢ € € such that ¢(0) =1) is
representable by a regular probability measure P supported by ex(C),
in the sense that

L&) = [,y e, L) dP(R)

for every continuous linear functional L on €. If in particular we con-
sider the evaluation functional L,(¢) = ¢(f) —which obviously is linear
and continuous— we conclude that

(7.1) $(1) = Li9) = |, e, L) dPLS).
Let us define a measure p over every Borel set B of [0, o] as follows:
(7.2) w(B) = P[T(B)]

and put f(a) = u([—o,a]). Now, as L(¢$;) = max{0,1 — |¢t|/a} and
T~ (ex(®)) = [0, ], we have that

(7.3) o(t) = j (0, X0, 1 = |¢|/a} dF(a)
or else
(7.4) () = [Jmax(0, 1~ |¢|y) dG(y)

where G(y) = 1 — F(y~ ") is the distribution function of the random
variable Y = X!, where X has distribution function F.

Observing that y(f) = max{0, 1 — |#|} is a characteristic function
corresponding to a random variable W with probability density func-
tion fu(x) = (2x) ~ '(x/2) ~%sin?*(x/2), we conclude that ¢ in (7.4) is a
characteristic function, corresponding to the absolutely continuous
random variable Z = WY, W and Y as described above and indepen-
dent.

110



We have then established, as announced, the following generalized
form of PoLyA’s sufficient condition for a given function to be a
characteristic function:

Theorem 7.1. Let ¢ be a continuous real valued real function such
that ¢(—¢) = ¢(f) < ¢(0) with ¢(0) € [0, 1], lim;- - ¢(¢) = c € [0, 1], and
#(|¢|) convex over ]0, «o[. Then ¢ is the characteristic function of an
absolutely continuous random variable.
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