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Resumen y motivacion

Recientemente, se han propuesto varios métodos para modificar los
factores Q y R de una matrix una vez que se ha eliminado (o afiadido)
una fila 6 una columna. Normalmente, la descripcidon de estos métodos
se efectua en el contexto de una determinada aplicacion; quiza sea ésta
la causa de su escasa difusion.

La aplicacion de la factorizacion QR se puede concretar,
basicamente, en las tres siguientes posibilidades: resolucion de un
sistema sobredeterminado de ecuaciones lineales, obtencion del vector
que ajusta por minimos cuadrados una linea a una serie de observa-
ciones, y estimacion de los coeficientes multiplicadores de Lagrange
en programacion no lineal con restricciones. Aunque esta ultima
aplicacion es la motivacion de este trabajo y predecesores (ver referen-
cias), los métodos descritos pueden aplicarse de forma andloga en las
dos situaciones anteriores.

Sea A una matrix n X t (donde n > t) de rango ¢ tal que Q'A =
= (R 0)" es su factorization QR donde Q' y Q" son matrices no simé-
tricas ortonormales #n X n, R’ es una matrix trfangular superior no sin-
gular 7 X ¢ de rango ¢, y 0 es la matrix nula (n — ) X ¢. Sea Q"' =(Q'0j)
donde Q’ y Qj son, por tanto, matrices ortonormales. De donde,
A = Q'R’. Sean Q'y Q" matrices ortogonales n X n tal que Q' = (00,
(*) Recibido, Enero, 1982
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Q=Q'DyR = D"'R’, donde D es una matrix diagonal ¢ X f que recoge
la norma euclidea de las columnas de Q.

Aunque tedricamente A = Q'R’ y A = OR, las expresiones anterio-
res no son necesariamente correctas desde un punto de vista computa-
cional debido a los errores de redondeo y cancelacion que existen en
las operaciones intermedias para obtener los factores. En trabajos
anteriores demostramos que la utilizacion de Q y R es mas estable que
Q' yR.

Ocurre frecuentemente que una vez obtenidos los factores Q y R (6
Q’ y R’), se modifica la matrix A tal que se elimina 6 afiade una de
sus filas o columnas (ver las aplicaciones apuntadas mas arriba); en
este caso, no es preciso calcular los nuevos factores de la matrix A
totalmente desde el principio, aunque computacionalmente seria lo
mas correcto. Ahorros considerables de tiempo de calculo se pueden
obtener si se elimina 6 afiade una columna 6 fila en los factores Q y
R (6 Q' y R’)y, posteriormente, se efectua la correspondiente transfor-
macion a base de aplicar matrices Givens.

En este trabajo describimos métodos, computacionalmente estables,
para actualizar.los factores Q y R de la matrix A una vez que se ha
eliminado una fila o una columna en dicha matrix.

Abstract

In recent years several algorithms have appeared in the literature for
modifying the factors of a matrix following a rank-1 change. These
methods have always been given in the context of specific applications
and this has probably inhibited their use over a wider field. In this
report a method is given for obtaining the QR factors of a matrix and
its updatings after a row or a column has been deleted.

1. INTRODUCTION

Let A be a nxt (where n>¢) full column rank matrix being
Q'A = (R"'0" its OR factorization, such that Q' and Q" are n x n
nonsymmetric orthonormal matrices and R’ is a ¢ X ¢ nonsingular full
rank triangular matrix. Let Q~" be partitioned such that g’ =(Q' Q%)
where Q’ and Q3 are n X t and n X (n — ¢) matrices, respectively.
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Note that Q"Q’ = I and, then, Q"Q’ =1, 03'Q," = Iand Q"'Q; = 0.
Note also that Q'Q” = I=Q’'Q" + Q303" and A = Q'R’. Elsewhere
[3] we survey the applicability of the QR-factorization and, specially,
the expresion A = Q’R’ in linear least square fitting and nonlinear pro-
gramming.

Let Q and Q’ be n X n nonsymmetric orthogonal matrices; let Q' be
partitioned such that Q’ =(Q Q,) where Q=Q’'D, being D a t xt
diagonal matrix such that d; takes the euclidean norm of the i-th col-
umn vector of matrix Q.

Note that theoretically A = Q’R’ = QR where R = D™ 'R’; but it is
not computationally guaranteed that it is correct. Elsewhere [2] we
describe a version of the modified Gram-Schmidt QR-factorization
that obtains factors Q and R with the maximun accuracy that is possi-
ble in today computers. See in [12, 7, 10, 9, 5, 1, 4 and 11] different
versions for obtaining factors Q' and R’. Our results show that fac-
torizing A with Q and R is far more stable that using Q" and R’; the
reason is that rounding errors are reduced if some computational
calculations are substituted by their values derived from theoretical
‘properties. :

Very frequently it happens that once obtained factors Q and R (or
Q’ and R’), matrix A4 is modified by adding or deleting a row or a col-
umn. Let A be the new matrix and Q and R the new factors. Con-
siderable savings can be made if Q and R are not completely calculated
anew, but Q and R are updated after being selected the row or column
to be added or deleted. The general idea consists in adding or deleting
arow or column to matrices Q and R such that A = QR and, by apply-
ing Givens matrices, modifiy Q and R such that they become QR-
factors. Elsewhere [3] we describe the procedures for updating Q and
R when adding a column or a row; see in {5, 1] procedures for updating
factors Q’, Q" and R’. In this paper we describe computationally stable
procedures for updating Q and R when a column or a row is deleted
from matrix A.

Notation. Small letters denote column vectors (and, sometimes,
scalars), subindexed capital letters denote row vectors, and capital let-
ters denote matrices.

Through the paper we will extensively use Givens matrices [6, 8].
Recall that a Givens matrix, say P! is the identity matrix where its 3, -
th, (i, j)-th, (j, i)-th and (j, j)-th elements are substituted by c, s, s and
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-c, respectively, such that ¢® + s> = 1. Note that P} and P! are or-
thonormal matrices. One of the most useful applications of Givens
matrices is the possibility of anninhilating a single element, say j of a
vector based on other element, say i such that if we set

@ =vi+Vj, c=—+v/e, s=—+v/e

then v = Pjv is such that ¥i = — +g, ;= 0 and ¥ = vx for k =i,/
An efficient computation Piz (where z is any vector distint of v) is
as follows. ‘
(1) Compute y =s/(1 + ).
(2) zi=czit+sz; Zj=y¥Zi+Z)—2; Zk=2zkfor k#i,j.

2. DELETING A COLUMN VECTOR FROM MATRIX A

Let delete column vector a from matrix A = QR whose dimensions are
as above; then,

A=(A1aA4))=0ORiTRy)

A=(A142) = Q(R1R;) = OR @1

where R is a t X (t — 1) upper Hessenberg matrix (whose diagonal is
not necessarily the identity in its last part R;) with identity subdiagonal
from row p + 1 to ¢, such that column vector r is the p-th column of
matrix R. Note that if p = ¢ then R, vanishes and R = R, is already up-
per triangular with identity diagonal. For transforming R in an upper
triangular form, it could be written
A = QP'PR 2.2)
where P is the product of Givens matrices such that
P=P"', ..., PPLIPE 2.3)

Note that Q is non-normalized (and, then, QP is not orthogonal). But
since A = Q'R’ where Q' = QD' and R’ = DR and Q’P" is orthonor-
mal, it results

A=0QD 'P'PR’ 2.4

where



R’ = (R{R%) (2.5)

such that R takes the first p — 1 columns of DR, and Rj takes the last
t — p columns of DR. After applying P to R’ we have matrix

R\
( 0 > = PR (2.6)

where R’ is a (t — 1) X (¢ — 1) upper triangular matrix whose diagonal
is not necessarily the identity, and O is the zero (¢ — 1)-row vector.
Assuming that d; = F#, it results

R’ =DR 2.7

where R is a (f — 1) X (¢ — 1) upper triangular matrix with identity
diagonal. Then, denoting

Q' §)=QD'P' 2.8

it results
1 - A R — (N SN R
A=0D 1PD<0>—(Q q)D<0>

where (Q’@’) is a n Xt orthonormal matrix and, then Q' is a
n X (t — 1) orthonormal matrix.
By using (2.7) and (2.8), it results

A A 7 R, A D
A=(Q’q)<0>=QR
Note that |gi|2 = d; is already available; then, it results
A=Q'R'"=QD 'DR = QR

where Qis a n X (t — 1) orthogonal matrix and Risa (¢ — 1) x (¢ — 1)
upper triangular matrix with identity diagonal. Note that || - ||, is the
norm that has been used. Although comparing this procedure with the
direct calculation of Q and R [2] where || - ||3 is used, it is not so stable,
the time savings are considerable; however, matrix A must be directly
factorized after a given number of updatings.

The computational procedure is as follows.

QRDEC (QR updating when the p-th column vector is deleted from



matrix A).

Step 0. If p = tthenreset R = R, (2.1), delete column vector g, from

Q, reset Q = Q, and end the procedure.

Note. In the description of the procedure we will refer to several
matrices (Q’, Q’, O and, so R’, R’, R); but for the sake of storage sav-
ing we will only work with matrices Q and R;.

Step 1. Obtain matrix Q’ such that reset g; = qi/di for i=p, ..., 1t.

Step 2. Obtain matrix R’ such thatresetr; =ri i fori=p,...,t -1,
rpj=rpidp for j=p,...,t—1, r-1=4di, rij=ryd; for
Jj=i-1,...,t—landi=p+1,...,t—1.

Step 3. Obtain matrices R’ and Q’; that is, obtain row vector R and
column vector gi for k =1, ...,¢ — 1. Note that since g = gk
and Ri =Rt for k=1,...,p — 1 then step 3 is restricted to
k=p,...,t—1. :

Obtain P% , 1rx where ry is the k-th column of R’; that is, ob-
tain rpx for h=k, k + 1:
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a= (ke + rk+1,k)
C=r/a; S=rk+1,k/a

rkk =@ Tk+1,6=0

y=s/(1+0)
Obtain P§ . rifori=k+1,...,t— 1; trhat is, obtain 7
forh=k, k+1:

a =Crgi + Stk +1,i
rest,i=Y(Iki+ @) — e+ ,i
rei=4a

Obtain Q’P¥ . y; that is, obtain guP%+1 and gn,x+ 1Pk +1
for h=1,...,n:

a = Cqnk + SQh,k + 1
gn,k+1 = Y(qnk + @) — qn,k+1- It is not required for
k=t-1
dnc = a

Step 4. Obtain matrices R and Q; that is, obtain row vector R; and col-
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umn vector g; for i = p,...,t — 1, such that reset
rij=rj/riforj=i+1,...,t-1
qni = qnilii for h = 1,...,n
_ di=rk; ri=1
such that d; = (d»)'>.

3. DELETING A ROW VECTOR FROM MATRIX A

Assume matrix 4 = QR has the same dimensions as above being n > ¢
and row vector A, is to be deleted from A. Without loss of generality
we may assume that the vector is in the bottom of matrix A; if it is not
then we may permute the rows in A and Q so that

D@ e ) o

~ where Q is a (n — 1) X ¢ matrix obtained by deleting row vector Q,
from the n X ¢ orthogonal matrix Q; then Q is not orthogonal, nor it
is matrix (Q X en) since

<Q’ Q'n>< Q 0> _ <D’ Qz>
0 1/)\Qn 1) \Qn 1
and Q, # 0 by definition of the QR factorization.
Let as usual Q’ = QD! be the corresponding orthornomal matrix,
being R’ = DR
The aim is to transform matrix §’ in orthonormal so that the new

matrix Q’ is such that
A Q" 0\(R’
(4)- (S DG e

where Q’ and R’ are the factors of A, being Q' orthornormal and R’
upper triangular.
For obtaining (3.2) we must transform matrix

o 0
<Q',' 1) (3.3)



in orthornormal without modifying the upper triangular structure of
matrix R’; that is, we must obtain the scalars ¢ and g, the (n — 1)-
column vector § and the #-column vector r, such that the QR factoriza-
tion of matrix (3.3) can be written

- e
(Q:. 1) " \e o/\ e G4
since in that case

()-8 D DE)-G 9E) e

Since matrix

o G\
(& %)

is orthonormal, if it is postmultiplied by P, where P is an appropiate
sweep of Givens matrices (see below) then the new matrix is also or-
thonormal. If matrix P is such that

Qi oP'=0 —+1) (3.7a)

then

(@ PP'=(@Q 7)=(Q 0 (3.7b)
5 %)
0 —-+1

Note that §' = O since 1 = ||(g"* — +1)||3. Let (g/* 0) be the i-th
row of matrix (O 0); then, we also have that 1 = ||(@/* 0)||5 = ||g/]|3-
From (3.5) it finally results (see below)

(3)-(@ D(3)-(3 %))~ (%)

where C is a t-row vector (note that A, = C’), such that

since matrix

is also orthonormal.

A=Q'R'=QD 'DR = QR



where D is a ¢ x t diagonal matrix such that di=rli,Qisa(n—1)xt
orthogonal matrix, and R is a ¢ X ¢ upper triangular matrix with identi-
ty diagonal.

For obtaining o, o, § and r we may proceed as follows.

The OR factorization of matrix (3.3) means that

e 9-(l, 0 b))

@ 0Q g3+ d°
. _ Q’>
Q= <Ql.

”n q~ —
(0] (o) =0 (3.8)

such that from (3.4) we have

o0y ., q
(0)-r+ (%) o9

Premultiplying it by Q”, it results
)e

Q"(?) Qg+ Q"(
Qi =r+ Q"(i)e = (.9)

where

and, then

Q L

and, then

since expression (3.8) must hold. If ¢ # 0 then matrix (3.3) is OR-
factorized provided that ||§||3 + ¢® = 1 (i.e., it is a unit length vector);
otherwise, any vector § with unit length (since 0 = ¢ as we may see
below) that satisfies the orthogonality property O’’¢ = 0 may produce
the QR factorization of matrix (3.3); see (3.8). See below that should
e # 0 it may be made positive.

Note that if theoretically §o = 0 then matrix (3.3) is not a full col-
umn rank matrix since from (3.9) it results that the (n + 1)-th column
of matrix (3.3) is a linear combination of its n first columns (matrix
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Q7). In this case, matrix (3.3) has not a QR factorization; the cor-
responding factorization is termed compiete QR factorization.

If ¢ as given by expression (3.13) is ‘small’ the procedure may
become ill-conditioned when calculating § and the orthogonality pro-
perty (3.8) of matrix (3.3) may be lost. The calculated value (3.13a) of
¢ may be small due to rounding errors in the calculation of Qy

t
On= 2 qni/di
i=1
since in d; = ||qi||2 square root operations are used. However, by using
expression (3.13b) where square roots operations are avoided, the risk

of losing orthogonality is strongly reduced.
Expression (3.9) can also be written

0\ (Q'r+de\ (00O g
<1> - <Qar+ 09> - <Qz > " (a)g

0- 00 _ (4
(=)~ () G40

Since matrix (3.6) is orthonormal, it results that

from where

11415 + o> =1
and then
q'- 2
(D)ol - edtaiz+ o -

g 2
= [|0"Qx|3 + (1 — Q705
=0:0"0'0x + (1 - On0HY (3.12)

Since Q' = <g,>is orthonormal and, then
n

Q"'/
On

it results that (3.12) can be written

1=0"Q'= (Q"’le')< ) = 0"Q" + 00



e” = Qi - QHONQN + (1 — G0’

=1- Q.0 (3.13a)
=1- Zt} qr/d? (3.13b)
i=1

By using the last part of matrix (3.11) and (3.13a), it results that
o®> = o0p. Then, if ¢ #0 we have g =o0; if ¢ =0 it results that
0,05 = 1 and, since 0;05" + 0* < 1 (see below), it finally results that
o = 0. We may see that in any case g = 0.

As a result we have

r=0¢  (3.10)
Q=0
o> =1- 0:07 but using expression  (3.13b)
t
Gn = -(Z thQni/dlZ>/Q for h=1,...,n (3.14)
i=1

‘by using (3.11) and avoiding square root operations.
Note that 0:Ox' + o® < 1; in effect, let Q' be the n X n orthonormal

matrix, such that
, Q~I O B El
< <Q:. 1> N < 0 )

()

Note that matrix (3.3) is a n X (¢ + 1) full column rank matrix.
Matrix Q" can be written Q% = (Qi Q%) where Qf is matrix (3.6).
Then.

where

Let Qx denote the n-th row of matrix g’ ; then

I = 0iQi' = Q1 Qf, + 04,04,



Note that 0 < Q_{,,Qi,’, < 1 and, then, equivalently

(On 0)< a"><1

Matrix P in transformation (3.7a) can be expressed such that

113 1t
P( n>=Ptl+lP£+l...P£+l< ">=‘Yet+1 (3'15)
e e .
Note that vy = — +1 since

”t

nt
||P< ")II% = (Qx e)P’P< > = OnQi + @’
e e
and from (3.13), and by using (3.15), it results
1= ||ver+1ll3 =+
Note that the application of PP to matrix (3.5) can be expressed
<Q-: q>Pf+l...P5+1Ptl+lpaﬂ-lpa+l...P;+1<R,>
O e 0

The computational procedure is as follows.

QRDER (QR updating when the last row vector is deleted from matrix
A)

Assume that A is a full column rank » X ¢ matrix where n > ¢.
Step 1. Obtain scalar g (3.13b) such that

M~

?=1- > qa/d}; o= ()"

i=1

Step 2. Obtain the (n — 1)-column vector § (3.14) such that

t
qh=—<2qhiqni/d?>/e for h=1,...,n-1
i=1

Step 3. Obtain matrices R’ = DR and Q' = OD, such that R and Q
are reset to the normalized values.
Note that the #-column vector r (3.10) is not required by the
procedure.
Step 4 Obtain matrices Q’ and R’; that is, obtain column vector gk
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and row vector Rf for k = ¢, ..., 1 by using matrix Pin (3.15).
For that purpose, the operations to be perfomed are as
follows. Obtain updating of @ by reducing to zero the k-th ele-
ment of Qy, such that the operation (Q; o)P:™! (3.7a) is
performed:

0’ =¢q%% + 0% a= ()% ifg>0thena= —a.

c=gp/a; s=qn/a. Note that -1 <c<0

e=a; gu=0

y=s/(1+c¢)
Obtain (Q’ @’)P%*! (3.7b); that is, obtain g« and g’. Note
that it consists in resetting gnx and gn for h=1,...,n — 1:

a = cqn + Sqnhk
gk = Y(gn + @) — Gnk
gh=a

Obtain P%*'R’; that is, obtain P{* 'R/ fori=k,...,t:
Obtain rxx and cx, where ck is the k-th element of row vector
C: '

Ck = STkk
rex = —cre >0

Obtain rg; and ¢ fori=k +1,...,¢:

a= —Crgi + sCi
Ci = STki + CCj
rei=a

Step 5. Obtain matrices R, Q and D as in procedure orDEC such that
i=1,...,t,j=i+1,...,tand h=1,...,n— 1.

For avoiding computational rounding errors and noting that g% =

= 7% for k=1,...,t, the above calculation of ri is substituted by
the following:

ck=sdx and g% = 2d: >0

such that vectors g« and Rx for k = 1,. . ., f are calculated in step 5 as
follows. Reset:



Fxi=Tki/dy for i=k+1,...,t and Fex=1
Gnk = Qhkd)

where dx = (dP)"2.

8. CONCLUSIONES

In this report we have presented a set of methods that can be used to
update the QR factorization of a n X ¢ matrix after the most frequently
used matrix modifications. These methods keep updated two matrices
and one vector whose storage needs are n X t, t X (¢t — 1)/2 and ¢,
respectively. The computational time in each updating is very small;
special care has been taken in computational stability.
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