TRABAJOS DE ESTADISTICA Y
DE INVESTIGACION OPERATIVA
Vol. 34, Nim, 3, 1983, pp. 95 a 108

D-OPTIMAL CYCLIC TWO-DIMENSIONAL BLOCK DESIGNS

J. N. Srivastava
A. M. Wijetunga**
Colorado State University

Abstract

In this paper we consider a class of incomplete block designs in which
each block is two dimensional. Thus, hetrogeneity is removed not only
between blocks, but also in two directions within each block. Such
designs have been considered before in Srivastava (1977, 1978). Here,
we consider the class of cyclic desings of this type when the number of
treatments v is an odd number between 5 and 25, and present designs
that are D-optimal within this class.

INTRODUCTION

Within the class of ordinary incomplete block designs, the subclass of
cyclic designs is well known. (See, for example, KEMPTHORNE (1953),
Wotrock (1964), Davib and WoLrock (1965), etc.) Such designs have
many desirable properties. This includes, for example, ‘flexibility’,
since such designs can be made for all values of v. Ease of representa-
tion is another advantage since only one block of the design need be
given, the other blocks being obtained from it in a cyclic manner. The

(*) Recibido, Septiembre, 1981
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analysis of the design is not too difficult since the information matrix
is a circulant, about which a rather large amount of theory is available.

However, ordinary incomplete block designs do not provide elimina-
tion of hetrogeneity in two directions. Designs that do provide for this
feature, such as generalized Youden design (Gyp’s) of which latin
squares, etc., form a subclass, suffer from the difficulty that there may
be row-column interactions present. This, indeed, becomes highly like-
ly since the number of rows and columns is usually large. In may situa-
tions, such interaction may be present even when the number of rows
and columns is relatively small.

One way to handle this would be to eliminate hetrogeneity wihin
each block. Thus, consider the following design with v =5, and b
(number of blocks) = 5, such that each block has two rows and two
columns.

Table 1
112 213 314 415 5|1
3|4 415 511 12 213

Let the effect of the kth treatment (k=1,...,v) be denoted by 7«, the
effect of the jth block by «j, the effect of the gth row sub-block within
the jth block by pjg, the effect of the hth column sub-clock within the
jth block by «j», and the yield in the cell (g, 4) of block j by yjen. Then
we shall work with the model:

(1.1a) E(yjgn) = 7k + aj + Pjg + v,
(1.16) Observations on distinct experimental units are independent
with variance o2, for all permissible k, j, g, and A,

where we assume that the kth treatment is applied to the experimental
unit corresponding to the cell (g, #) of block j. Notice that we are
assuming an additive model for row and column effects within any
block. However, obviously, this would usually be far more plausible
here than in the corresponding GyD setting. This is so because in the
former case, the number of rows and columns per block can be taken
to be small. For example, in the design presented above, each block has
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only two rows and two columns. Indeed, in this paper, we shall restrict
ourselves to designs of this type.

For the design presented above, it can be shown that the information
matrix equals 5/5-Jss, where, throughout this paper, I, will denote the
(m x m) identity matrix, and Jm» the (m X n) matrix with 1
everywhere. This design is ’universally optimal,’ (see KiEFER (1959))
within the class of all incomplete block designs (with one or two dimen-
sional blocks) and with 4 replications.

Notice that in a design in which each block is of size (2 X 2) (i.e. has
two rows and two columns) we obtain an estimate of exactly one (in-
dependent) linear function of treatments, under the above model. Thus,
in
the above design, the first block gives us the estimate of (71 + 74 —
— 12— 7).

Let

(1.2) Zi=ym+yYm2—Yin2—Yo; j=1,...,b.

Then, clearly, E(z;)) is free of the nuisance parameters a’s, o’s and a’s.
Moreover, it is easily checked that this is the only linear function of the
four observations in the jth block which is free of nuisance parameters.
Thus, for all practical purposes of statistical inference, we can
equivalently assume that we are having observations z;, for different
values of j.

For example, for the above design, we obtain the model:

(1.3) € —Zl = i + - — + 0 ] _T1—
22 0O + — — + T2
23 + 0 + - - T3],
24 -+ 0 + — | |7s
| 25 | |- — + 0 + ] |75]

where + and — stand for +1 and —1 respectively. Define

(1.9 Z=@1..520), T =(1,...,T0).
Then (1.3) becomes
(1.5) E(z) = X7,

where the «coefficient matrix X is the (5 x 5) matrix on the right hand
side of equation (1.3).
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A general cyclic 2-dimensional block design (C2DBD) is defined as
follows. We have b = v, and the jth block is

(1.6)

j+0 [ j+a
J+B | J+n

where «, 8, y are distinct integers satisfying 0 < «, 8, v < v — 1. Here,
the addition of integers is to be done (mod v), and v is to be used in
place of 0. The block corresponding to j= v will be called the
generating block of the design. The jth block, displayed in (1.6) may
be compactly written as ((j, (j + v)), ((j + @), (J + B))). This block is
clearly fixed by the triple (a, 8, v), knowingly which the whole design
can be completely described. For the design in (1.6), the model in terms
of ¢ and 7 is

(1.7) E(}) = X1, V(§) = 401,

where the nature of X will be described as we proceed.

Notice that without loss of generality, we can assume that o < 3.
Also, a design in which y < o < 8 is identical with some design in
which a < 8 < 4. This is seen by noting that if the design has a block
((vsv), (a,B)) with y < a < @, then it also has a block ((v— v, v),
(o — v, B — 7)), because the latter block is obtainable by adding (v — )
mod (v) to each cell of the former block. The above shows that,
without loss of generality, we can assume that a <3, v> «, and
a, 3, v are all distinct.

As an illustration, let v =7, a = 1, 8 = 2, and v = 4. Then the seven
blocks of the design are ((1, 5), (2, 3)), ((2,6), (3,4)), ((3,7), 4,5)),
(4, 1), (5,6)), ((5,2), 6,7, ((6,3), (7, 1)), (7,4, (1,2)).

It is clear that each block of a C2DBD provides the estimate of a
linear contrast between the treatments. It follows that all rows of the
X matrix add to zero, so that Rank (X) < v — 1. This is, of course, the
case in the usual incomplete block designs. We consider designs in
which the information matrix X’X thus has (v— 1) non-zero
characteristic roots. Choosing a design with the largest value of the
geometric mean of the non-zero roots then corresponds to choosing a
design that is D-optimal. In this paper, we provide the values of «, 3,
~ for all designs which are D-optimal. This is done for all odd valued

98



of v satisfying 5 < v < 25. (There may exist (noncyclic) designs better
than these from the viewpoint of D-optimality, but our designs are the
best among those known so far.) The parameters of such optimal
designs are presented in section 3, along with a computer program for
generating the same for any odd value of ». The next section presents
some mathematical theory for these designs, in order to facilitate the
computation needed for estimation, test of hypotheses, etc.

Unfortunately, designs of the form given by (1.6) provide only one
degree of freedom for error. This should not be surprising since we
have made the designs very sensitive by eliminating hetrogeneity in two
directions in each block. If the aim is primarily one of estimation, the
four replications provided by (1.6) should suffice. On the other hand,
for purposes of hypothesis testing more degrees of freedom for error
are needed unless a good prior estimate of ¢ is available.

It is clear that (v + 1) degrees of freedom for error will be available
if one uses two designs of the type given in (1.6). The question is as to
which two sets of («, 8, v) should be chosen to provide the 2b blocks.
For v = 5, the answer is that any two (not necesarily distinct) sets of
values of («, 3, v) will do the job. For v = 7, the problem has been solv-
ed by a computer search and the optimal pairs have been given in table
(3). The computer program given in section 3 would enable one to find
the optimal pairs for higher values of ».

What procedure should be followed for actually using one of the
designs for this paper. The first step would be to decide whether one
wants one or two designs of the type (1.6). Next, if the case under con-
sideration is not covered by table 2, one must use the computer pro-
gram to generate the set (s) of values of (o, 8, y) corresponding to op-
timal designs. One of these designs may then be randomly chosen for
actual adoption. In certain circumstances, instead of randomly choos-
ing among the available optimal designs, one may bring in other con-
siderations, such as practical convenience, etc. After the design has
been selected, the treatments, blocks, and the sub blocks should be ran-
domized as usual.

We close this section by providing some examples of situations
where such designs would be extremely useful. The first one concerns
agricultural experiments on mountain terraces. Often, the terraces are
not too big. Indeed, they may often not be able to hold more than one
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plot (oi . size that would normally be used on an experimental farm
in the plains). On these terraces, very wide variations in soil and micro-
climatic conditions can be expected. Thus, the conventional block
designs will not be advisable. However, designs in which each block is
two dimensional (preferably of size (2 x 2) as in the present paper)
would be called for. Four adjacent terraces could be used to form a
block, these being selected such that they form two adjacent pairs, each
pair consisting of a terrace at one level and a terrace just below it at
the next lower level. The two pairs so formed may be considered to cor-
respond to the two column sub-blocks. Similarly, the two terraces at
the higher level, versus the two at the lower level, would correspond to
row sub-blocks.

The next example which we present is from the field of education,
though it could be easily adapted to other fields such as marketing.
Suppose we wish to compare » methods of audio-visual instruction.
We may choose v towns, spread over the area of investigation. In each
town we may randomly select two schools and two teachers (not from
the two selected schools). The towns then constitute the blocks. The
schools and the teachers may be considered to correspond to row and
coilumn subblocks. Each teacher will provide instruction in each of the
two schools according to the selected design. Notice that the design will
effectively eliminate the variation between schools, which may be
large, and similarly, the variation between the teachers. The towns will
provide a good coverage, and yet the differences between them will be
eliminated. Notice that the ordinary type of incomplete block designs
on GYD’s are simply not applicable since the two schools or the two
teachers obviously do not form a factor cross-classified with the town.

The last example concerns the comparison of v varieties of a crop
over a large territory, such as a county. One may select b counties, and
two farms in each county. Another variable of classification may be
selected in each county. This variable may differ from county to coun-
ty, and may correspond to various important agricultural practices be-
ing followed. For example, in a certain county there may be a signifi-
cant proportion of irrigated and of non-irrigated lands on which crops
are grown. In this case, irrigation could be the variable under con-
sideration. On the other hand, in another county two different com-
peting methods of cultivation might be in vogue. Here, the variable
under consideration would correspond to the method of cultivation.
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Notice that we are able to use different variables for defining sub-
blocks in different counties (blocks), because our designs do not re-
quire cross classifcation of factors. It is apparent that an experiment
of this kind would not only be sensitive towards varietal comparisons,
but would also provide for a large base. In other words, the varietal
comparisons from an experiment of the recommended type will give us
a better picture of how the varieties stand in comparison to each other,
not only at the farm of some experiment station, but in the territory
at large, reflecting the various farming conditions and practices being
followed.

2. THE COVARIANCE MATRIX

Circulant matrices play an important role in the theory of cyclic
designs. Below we present a few known results concerning these which
are then used to obtain the covariance matrix of the estimates. Using
this, statistical inference problems can be easily tackled.

A circulant is a matrix C of the form

Co Cv-1 ... C1
2.1 C=l|c o« ... Co
Cv-1 Cv-2 ... Co

Let Q be obtained from C by taking c; = 1 and the other ¢’s equal
to zero. Then it can be easily checked that

v-1

2.2) C= Y ¢0,0' =1
Jj=0

Let D be a matrix obtained from C by replacing the ¢; by d; for all i.
Then we get

v-1
2.3) CD = 3, f,0Q", where
u=0
v-1
(2.4) fu = D) cdy u=0,...,0—1.
5,t=0

s+t =u(modv)
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Thus, the circulants form a linear associative algebra, say ¢. Hence, if
Cis non-singular, then C~'e ¢, and hence C~ ! is also a circulant. Also,
since Q' = Q" !, it follows that

v—-1
(2.5a) C’'= 3 cv-;Q’, with
j=0

(2.5b) Cv = Co.

Thus, C’, CC’, and C'C all are circulants. Now, let w = ¢*™/?, where
i=+/—1, so that y is a vth root of unity. Also, let

1
(2.6) e§=\/—5(ws,w§,...,w§’); s=1,...,v; where
(2.7) Dy = wU"S = e21l’i(5l)—s)/v.

As is customary, for any matrix {2, we shall denote the conjugate-

transpose of @ by Q*. Then, using the fact that the conjugate of e’
—i6

is e”'%, it is easy to check that

(2.8) eXs=1; e¥=0;, s, t=1,...,v0.
Define

2.9) d(W) =co+crp+ Cap® + ..o +coopt Y,
(2.10) E=lee, ... el

Then, we can verify that

.11 Ces = (p(w))es; s=1,...,0,

(2.12) E*CE = diag[(¢(«)), (#(w?)), . . . , (#(w?))]

Thus, the characteristic roots of C are ¢(w*), for k=1,...,v.

v

Recall the model (1.5). As usual, we take kZ =0, or
=1
equivalently,
(2.13) JooT = Ou,

where 0,,, denotes a zero matrix of size (m X n). Then, the model for
Z becomes

(2.14) EQ@) = (X + J)1, V(2) = 40’ L.
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Theorem. 2.1 Let M(v X v) be a symmetric matrix of rank (v — 1),
such that all its rows and columns sum to zero. Then the following
hold:

(i) (M + J) is non-singular,
(ii) 3|M + J| = Product of nonzero roots of M,
(iii) Let R((v — 1) X v) be a matrix such that [i/{/% 7] 18 orthogonal.
Then |[RM ™ R’]| equals the reciprocal of the nonzero roots of
M, where (—) in the superscript of M~ denotes a ‘generalized’
or ‘conditional’ inverse.

(iv) If M corresponds to the information matrix of a design, then a

design which maximizes the product of the nonzero roots of M
is D-optimal.

PRroor. Since MJyy = JuuM = 0.y, there exists an orthogonal matrix L
such that L'ML = diag(m,, ..., my-1,0), and L’JL = diag(0, ...,0,v),
where the m’s are nonzero. Results (i) and (ii) follow from this. Also,
clearly, L=1[L,;: ;/l_;-,vl]s where the columns of L, are orthogonal to Jy;.
Since M = L{diag(m,,...,my_1,0)}L’, every generalized inverse M’
of M is of the form M~ = L{diag(mi "', ..., ms11, mo)}L’, where mo
is some real number. Hence,

IRM~'R’| = R[Ll57—11);Ju1][dig(mfl,...,m5.11,mo)l l—lj{ ~| R’
’\/—EJ“,
= |RL{diag(mi ', ..., my;2)}LiR’|
= |RL{|*(my -my...my_1) !
But

_ R : 1 2_RL10 _ 2
] ool

—Jiv
Vo !
This proves (iii).
The result (iv) follows from (iii) and the definition of D-optimality.
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Theorem 2.2 Let X be as in (1.5). Then the following results hold:
(i) X equals the circulant ¢ in (1.1), with co=cuo-,=1,
cv-g = —1, and the other c¢’s being zero.
(i) If rank X = v — 1, then the product of the nonzero roots of X
equals 1/v|X + J|, and the product of the nonzero roots of X’X
equals 1/v%|X + JJ2.

(2.15) Let y()=1—pn *—p P 4+p .

Then the roots of X are Y(o*), k=1,...,0.
(iv) Given v, and b = v, in order to obtain a D-optimal C2BDB, we
must maximize

(2.16) A |: vl—_f a- e-27rika/v _ e—ZwikB/v + e—ZWiky/v)]
k=1
with respect to the parameters («, 8, v).

Proor. Statement (i) is obvious. Since every row (and column of X
has two (+1)’s and two (—1)’s, it is clear that

(217) XJow = JuwX = Opo.

Hence, there exists a matrix W such that W*XW = D,, and
W*J,wW = D,, where D; and D are lower triangular matrices, which
contain the roots of X and J respectively on their diagonals. Since the only
nonzero root of J is v, suppose that the (1, 1) element of D; is v, and other
diagonal elements of D, are zero. Then, because of (2.17), the (1, 1) ele-
ment of D; must be zero, while the other diagonal elements are nonzero
(since rank (X) = v — 1). Thus, |D; + D;| equals v times the products of
the nonzero roots of X. But |Dy + D;| = |W(Dy + D))W*| = | X + J|.
This proves the first part of (ii). By similar reasoning, and using the
fact that XX’ and J commute, it follows that | X’ X + vJ| = v? (product
of the roots of X’X). The proof of (ii) is completed by observing that
| X"+ J||X +J| =|XX" + vJ|. Part (iii) follows from (i) and the
remark after (2.12). Part (iv) follows from (iii) and part (iv) of theorem
(2.1). Throughout this paper, for any matrix M, the jth column will be
denoted by (M);. Also, let (a’, 87, v’) be the ordered form of the triplet
(a,B,7), such that 0 < o’ < B <v'<v - L
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Theorem 2.3 Let X be as in (1.5). The, the following hold:

(i) X’X is a circulant. If rank (X) = v — 1, then (X'X + Jw) "' is
a conditional inverse of X’X, and is a circulant.

(ii) Out of the 12 numbers o', 8’, v’, (B8’ — a’), (v’ — a’), (¥’ — B'),
@-a), @-B), W-v), @-B +a), -y +a’), and
(v—+v"+B’), suppose exactly n are distinct. Let
01 <62 < --- <0, bethese numbers. Then the nonzero elements
of (X’X), can occur only at the coordinates numbered (1 + 6,/),
where n’ =0,1,...,n, and where 6o = 0.

Proor. Part (i) follows from the remarks made before and after (2.5), and
using an argument similar to that in the proof of the last two theorems. To
prove part (ii), first observe that the (k + 1)th column of X is obtained from
the kth column by a one step cyclic shift, which consists of placing the last
element of the kth column at the top. Now, the successive elements of
(X’X), are obtained by taking the scalar product of (X); with (X)x, for
k=1,...,v. The column (X), and hence (X)k, for all k, have only 4
nonzero elements, which in (X); matches against a nonzero element (X)x.
This will happen, for example, when k=1+ (1 +8')— (1 + a’). The
reason is that the column (X); + g’ - o’ is obtained by shifting the elements of
(X): by (8’ — a’) places, so that the element in position (1 + ') in (X);
stands at the position (1 + 8’) in (X)1+s’ —«-. Similarly, since the column
(X)1+v-g+an is Obtained by shifting the elements of (X); by (v — 8’ + «')
places, the element in the position (1 + 8’) in (X); stands at the position
(1+a’)in (X)1+v-8"+a’- Thus, in the 4 plet (1, 1 + o', 1 +8°, 1 +7),
each pair gives rise to possibly two columns, which could give a nonzero ele-
ment when multiplied with (X);. This completes the proof.

Theorem 2.4

(i) If C at (2.1) is symmetric and v is odd, then the characteristic roots
of C are given by {(s=1,...,v), where

(v-1)7/2
(2.18) fs=co+2 D, ckcos(Rmsk/v).
K=1

(Notice that {s = ¢, -5, for all permissible s.)
(ii) If, furthermore, C is nonsingular, then (C~'); 41,1, the (j + 1)th ele-
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ment (j =0,1,2,...,v — 1)in the first column of C~! (which is a cir-
culant) is given by

w=-172
(2.19) (C Djs11= ” Zl ¢s tcos(2msj/v).

Proor

(i) Since C is symmetric, we have cx = co—x, k=1,...,(v — 1)/2.
Hence, recalling the remark after (2.12), we find that the root
#(w’) becomes co + DK -o0cke®™**, which equals (2.18), by
DeMoivre’s Theorem.

(i) From (2.12), we have

(2.20) C™' = E(diag([p(w)] ', . . ., [p(w*)] ")} E*.
= 27 [6(w")] ™ Texet.
k=1

Hence, (2.6) and (2.7) give

12 . .
(C Vjsr1,1= ;kZ CYCR) IR
=1

which leads to (2.19). This completes the proof.

Theorem (2.1) tells us how to deal with a matrix of the type M (which
is the kind that arises in this paper). Part (iv) of this theorem, in con-
junction with part (ii) of theorem (2.2) lead us to the formulae used in
the computer program. Theorem (2.3) enables one to quickly compute
X’'X. Indeed, using it, one can compute within a few minutes the
nonzero elements in the first column of X’X, and the positions at
which they occur. Substituting this information in (2.18) and (2.19),
leads us to the covariance matrix, (Here, we have to be reminded that
part (i) of theorem (2.3) should be used.) Thus, the procedure for com-
puting X’X, and a conditional inverse of the same is quite simple.
Given the design, using the triplet (a,3,7), we first determine
(', B’,7"), and (X’ X);. If more than one design is used, we determine
(X’X), for each design, and then add these to obtain (M),, where M
denotes the information matrix of the composite design. Then by using
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(2.18) and (2.19), we can obtain a conditional inverse of M, say M~ .
The estimate 7 of 7 is then given by

Q2.21) =M UXD D 4+ XD D] where d designs are being
used (giving rise to 4d replications), where X is the (v X v) X matrix
corresponding to the qth design, and where Z is the (v x 1) vector
of ‘observations’ from the qth design. Also,

(2.22) var(?) = 40°M "™,

which can be used in the usual hypothesis testing & confindence-
interval formulae.

3. TABLES OF DESIGNS AND COMPUTER PROGRAMS

In this section, we present the parameters (o, (3,vy) for D-optimal
designs with odd values of v between 7 and 25. As mentioned earlier,
for all values of v, except v = 7, we present designs providing 4 replica-
tions. For v = 7, we provide designs with 8 replications, and thus pre-
sent the two pairs of triplets («, 8, y) for each optimal design. For each
value of v, we present the value of A which equals the geometric mean
of the nonzero roots of the information matrix, and also of AV™!
(which is an integer). Also N, denotes the total number of optimal
designs, and hence, the total number of sets of parameters presented.

Table (2) give the designs with 4 replications and Table (3) with 8
replications.

Computer program is written in Fortran 5 and has been used in the
CDC 120-720 computer al Colorado State University. Furthermore, in-
formation will be found in the comments given along with the
program.
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