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ABSTRACT

In this paper quite efficient large sample estimation procedures are derived
for jointly estimating the parameters of the location- scale family of distributions.
These estimators are linear combinations of the means of suitably chosen blocks
of order statistics. For specific distributions, such as the extreme-value, normal,
and logistic, little is to be gained by using more than three blocks. For these distri-
butions we can obtain joint relative asymptotic efficiencies of 97-98% using the
means of three blocks of ordered observations. The estimation procedures are also
adapted for the estimation of the shape and scale parameters of the Weibull
distribution.

1. Introduction

During recent years a large amount of effort has been devoted
to finding estimators of scale (§) and location () parameters based on
linear functions of order statistics. Optimal asymptotic estimation
by order statistics, introduced by Mosteller [11] and Bennett [4], was
followed by numerous authors and considerably extended by Chernoff
et al. [5].

In the present paper we examine a class of large sample estimators
for the scale and location parameters which are based on the sample
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means of two or three suitably chosen blocks of ordered observa-
tions.

More specifically, for a location-scale family of continuous distri-
butions, F((x - N\)/6), we find estimators of X and & which are lincar
combinations of the means of the observations in the left and right
tails of the sample, i.e.,

1
*—_.
XN"N El Xo
Xyt =—1 S X
M -M i=M+1 0

where X(]) SUS<Xpy SUSX gy SUS X, denote the order ste-
tistics associated with a random sample of size n from the distribution

F((x — N)/8).

Furthermore, we give estimators of A and 6 using X and X,;;* and
the sample mean of a middle portion of the ordered observations, i.e.

- M
V=N jopey Ko

We focus our attention on estimators which are asymptotically
unbiased and possess the smallest variance within the class studied. At
least for the distributions considered here, these estimators arec shown
to be quite efficient and very simple to calculate.

Only complete samples will be considered but, in principle, the
estimation procedures can be easily adjusted for any kind of censor-
ing [10].

The importance and practical application of the tails in estimation
problems were already mentioned by Mosteller and Tukey [12]. For
finite samples, Jones [9] used the statistic
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= % Xn- 2 x. N<™
" ieniNe1 (1)“].=l (6L 2

to estimate the standard deviation o of the normal distribution and
derived the expressions for E(S,) and Var (S,,).

D’Agostino and Cureton [7] used Jones’ idea and proposed an
asymptotically unbiased estimator of g, the standard deviation of the
normal distribution of the form:

'dp» p=

:l&

N
n

which has been found to be very efficient and fairly robust.

For doubly censored samples Abe [1] investigated a class of estima-
tors of the scale and location parameters based only on sample tails,
permitting extra weights on the smallest and largest known observation.
The performance of these estimators in the normal distribution was
studied in [2]. For complete samples our paper extends the results of
[1] and also suggests the estimators in cases where some middle part of
observations is censored.

In the next section, we introduce briefly the asymptotic distribu-
tion theory for the sample tail and block means. Most of the proofs
are omitted, since the asymptotic normality is not surprising and the
normalizing constants can be derived using, for instance, the results of
[5]. More detailed treatment and proofs can be found in [10].

In sections 3 and 4 we derive the estimators and obtain their
asymptotic efficiencies. Finally, in section 5 the estimation procedure
is used to estimate the parameters of the Gumbel, normal, logistic, and
Weibull distributions.

2. Asymptotic distribution theory for tail means

Let Uy, ..., U, be ii.d uniform (0, 1) random variables and let

88



Uy <Ug) < < U, denote their order statistics, arranged in order
of increasing size. Define the statistic Uy

N
_21 g(U(j)) (2.1)
]=

1
Ui:ﬁ

where N = [np] denotes the largest integer not exceeding np, 0 <p <,
and g(*) is some real function defined over the interval (0, p].

Assumption A: g() is third order differentiable (a. e.) over the interval
(0, p], 0<p <1 and the integral

P
] g*(w)dw is finite
0

Theorem 1: If assumption”A is satisfied then

U; —u(p) —
g,(p) "p

is asymptotically distributed N(O, 1). The normalizing constants are
defined as

4
ul(p)=71,—’ g(w) dw (2.2)
J0

and

*p .
Uf(p)=71,-/ g2w)dw — ui(p) + [gp) — m (PP (1 —p)  (2.3)
J 0

Proof: follows from Corollary 3 and 4 of [5]. For a different proof
see also [10].
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Similarly we define Uy ™

1

n
U;;*: M '=1§I: g(U(]-)) . 2.4)

7 j=M+1

where M = [nq]. Let us assume that g() is defined on (0, p] U [g, 1)
and 0<p<g<I.

Assumption B: g(-)is third order differentiable (a.e.) on the union of
intervals (0, p] U [g, 1) and the integrals

-p -1
-/ g*(w)dw and / g*(w)dw are finite
0

v q

With the notation

.1
H2(q)= 7= / g(w) aw ) (2.5)
4 q

20— E 2 aw_ - 2 2

o,(q)=| g*(w) T g —wy(q) + [u2(q) — (@)1 q (2.6)
- q
and

012 (P, q)=[12(q) — g(q)] " [g(p) — 11 (p)] 2.7

we state the bivariate version of the previous theorem.

Theorem 2: If assumption B is satisfied then

Uy - (p) — Ur* - ua@) ——
o,(p) np and 0,(q) n(l-q)

are jointly asymptotically distributed
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with bivariate normal distribution

(el )

Notation: Here p denotes the coefficient of correlation, and is given by

__u@q) — .
0,()0,(q) Vo (1 —q) (2.8)

The normalizing constants u, (p) and of(p) are as previously de-
fined in Theorem 1.

Finally, we consider U ~, » defined by

M

- _ 1
Un m= M—_N i=1§‘+l gW ;) (2.9)

We note that the statistic 01\/, um appears in slightly different forms
in much of the literature on robust estimation of location (see e.g.,
David [8], Andrews et al. [3]).

Assumption C: With 0 <p <gq < 1, the function g(-) is third-order

'q
differentiable over the interval [p, q] and/ g%(w) dw is finite.
p

Theorem 3: If assumption C is satisfied:

ﬁN u— M3 q) o
03(p’ CI) " (q p)

is asymptotically distributed N(Q, 1), with the normalizing constants

”'3(p’ Q):

*q
d 2.10
‘1“17./,, g(w) dw ( )
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and

q
LHER / g2 (w) 72
P

j7 - [”3 (P’ q)]2 +

1
tg—p A =p)lus(p, @) —e@)* +q (1 —q): (2.11)

(8@ — 3. 1> +2p (A — @) [43(p, @) — gP)]- [8(q) — 13 (P, P}

The next two theorems state the joint asymptotic normality of a
sample tail mean and the sample mean of an adjacent block of obser-
vations.

Theo~rem 4: Suppose that Assumptions A and C are satisfied. Then U}
and UN’ um are jointly asymptotically normally distributed

] [ 2 1
11 (p) '0—1%)‘)‘ o13(p, @)
1
N ST , ) ’
Lus(p, q) Lols(p, q) %’(—f;,—q—
L - |
where
013(p, @)= (g(p) — 11(p))-
1—q _
'[ﬂs(l’» Q9+ q_;,l 8q)~ q—z g(p)J (2.12)

with g, (p), #3(p, q), 03(p), 03(p, @) defined by (2.2), (2.10), (2.3),
(2.11) respectively.

Theorem 5: Under the assumptions B and C, (Z’V. m and U;‘,* are jointly
asymptotically normally distributed with the covariance term

023(p, 9)= (2(q) — 8(q))-
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and with g3 (p, q), 12(q), 03(p, q) and 62 (q) defined as before.

We note that in Theorem 2 we made an assumption that 0 <p <
< g < 1. In this case the left and right tails have no point in common.

In the other case, when 1 >p > g > 0, both tails of the sample over
lap and both contain the N — M middle observations (100 (p --gq)
percent of the sample):

right tail

[ |
[l](l) << U(M) < U(M+l) <0< U(N) < U(N+l) < < U(n)
]

left tail

For the second case Theorem 2 remains valid, provided that
012 (p, q), formerly given by (2.7), is now expressed as follows:

44
012(p, q)=-l;ﬁ f gf(W) dw— (p—q)us(q p)+
Jq

+q (1 —p) (w2 (p) — g(p)) (g(q@) — 11 (q)) +
+qWs(@ p)—2@) B2(p) — #1(@) + (2.14)
+[q 3(q p) —1#1(@) + 0 2 (P) — #3(q P -

- [(1 —p) (g(p) — 13{q p)) — q (u3(q. p) — 8(q))]

Derivation of (2.14): We can write

«»_ 1 X 1 |MH N-M X -
=N =2 8Up)=x [M RGOy vy v LTV b
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M N--M -
=N U t—x Unwn (2.15)
and similarly
k¥ _ 1 Y': T _ N-M - n-—-N ek
Lll n -\ I_=.‘;’+15(u(i))" n -\ l].",N+ n-M UN (2‘6)

Define €= lim (M/NV)and y= lim n - N)j(n — M).

Clearly £=g¢/p.y= (1 - p)/(1 — q) and thus

14
Ut Lo+ (1= s, U oy, + (1= y)ps, as n>oo

where, for brevity, we use the notation u; =p,(q), M, =M, (p) and
K3 =H3(q. p).

We calculate

012 (’57. q) ZTCOV (U;, U;;*)‘l’ £y Cov (U;;, UN**) +

+(1=£)yCov(Uy v, Uy*) + E(1 = 7) Cov(Uy;, Uy ) +

+(1—7) (1 - & Var Uy ») 2.17)

then replace the variance - covariance terms in (2.17) and after some
rearrangements and calculations (2.15) follows easily.

We also state a bivariate version of Theorem 3. Consider

t 22 ... asymptotically equal, in fact we have

lim n Cov(Uy, Uy )=012(p, q)

n oo
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- _ 1 Ny :

Uvim: = N, =N, j=1§l+lg(U(,-)) (2.18)
and

- 1 M,

UMI’M2_~M2——M1 j=le+1 gW) (2.19)

where N; = [np;, M;=[ngq;],i=1,2,and 0<p, <p, <q, <q, <L

Theorem 6: If the conditigns of Theqrem 3 hold for the intervals
[p1,p2] and [qy, q;] then Uy . and Uy, p, are jointly asymptoti-
cally normally distributed

2
03(py, p2)
k3 (p1,p2) 1 ';2—_1'111‘2 - 612(P1,D2; 41, 42)
N "
2
( ) o ( . ) 03(ql3 Q2)
L#a qd1, 4> 12\P1,P2:41, 92 T

where

012(P1, P23 41, 42) = [(@2—q1) (P2~ -
“[p2(€(p2) — k3 (p1. P2)) ~
—p1@(p1) M3 (P1, P (2.20)
[(1—q2)(€(q2) —H3(q1, 42)) —

= (1 —q1) (8(q1) —r3(q1. q2))]

The expectations p3(-,-) and the variance terms ag(-,-) are given by
(2.10) and (2.11) respectively.
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3. Choice of estimators

ing the continuous c.d.f. F( 5 )and density 6‘1f( 3

Let X, X,, ..., X,, be a random sample from a population possess -
x—\ )

x—A

Denote by X ) <X, < <X, the order statistics corresponding
to the above sample. The parameters A and 8 are both unknown.

(a) First, we shall consider the estimators of A and & based only on
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sample tail means X and X;;* defined by

xp- 4
and
1 n
Xy = > X (3.2)

n—M j=M+l

where N = [np], M = [nq] with 0 <p, g <1 fixed.

The standardized random variables Z;, i = 1, ..., n which are related
to the X;, i=1,..,n by Z;=(X;—N\)/8,i=1, ..., n, are i.i.d. ran-
dom variables distributed with c.d.f. F(x) and p.d.f. f(x). Note that
F(x) and f(x) are parameter-free and hence completely known.

Denoting by Zy and Zy™ the sample tail means of the standardized
variable Z one may write

Xy =\+82Z%
Xy =n+082Zy"

By Theorem 2, Zy -P—n.t,(p) and Zy* —p—>u2(q) as n - oo, where
uy(p)and p,(q) are:

‘xp

ui(p)= / x dF(x) (3.3)



/xdF()) - (34
*q

1
#2(‘1)= l—q

where x, and x, are the p and g quantiles of the distribution F(x)

defined by equations Xp= F~!(p) and Xg= F~1(q). Clearly, in our

case we have: g(w) =F '(w), where F~!(-) denotes the inverse of
F(-), and asymptotic normality is evident, provided that F!(w)
satisfied the assumption of Theorem 2.

Therefore, as n = oo, we obtain:

Xy SN+ 5, (p)
and

Xt BN+ 8 ua (@)

Then the natural way to define the asymptotically unbiased estima-
tors for A and & is

_B@Xy — i (p) Xy

AX 3.5
" ki (q) — 1 (p) 3.5
and
X** _ X~*
r=M N (3.6)

T 1 (9) — 11 (D)

The estimators (3.5) and (3.6) are simple linear functions of X ,’\",
and X;*, and hence functions of tails, depending on numbers p
and q.

The asymptotic normality of X5 and Xj* implies the asymptotic
normality of the estimators \; and 8. Thus for large n we can
use this fact to construct approximate confidence regions for the
parameters A and & (cf. Cramér [6]).
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Note that useful relationships between the tail means and variance
will simplify subsequent calculations. Namely, it is easy to show that
for a continuous random variable X with a finite variance Var (X)=
=02 and the mean E(X)= pu, for every p, 0 <p < I, we have

k=pu(p)+ (1 —p)u(p) 3.7

and

or=pai(p)+(-pa(p)+
+2p (1 —p) W (P)—xp) (Xp — 11 (D)) (3.8)

where xp = F~1(p). In addition, if the variable X is symmetrically
distributed about the origin we have

ki (p)=—u,(1 —p) 3.9)
and
o3(1-p)=03(p) (3.10)

forevery p, 0<p <.

(b) We extend the estimation procedure developed in the previous part

98

by utilizing the mean of the middle portion of the ordered obser-
vations.

Let 0<p<g<1. The numbers N and M then determine the
partition of the ordered sample as follows:

X(l) <... <X(N) <X(N+ l) <... <X(M) <X(M+ 1) <... <X(n)

,
—~/ Vs \'2

left tail middle part right tail

Consider now linear estimators of A and 6 of the form

M= Xy + Xy + e X (3.11)
8, =d\ Xy +dy Xy y +ds Xpf" (3.12)

and



where X; and X;}* are defined by (3.1) and (3.2) respectively and

. 1 M
XMM:_]I_'I_——N—-_E X(j) (3.13)

The coefficients c¢;, d;, i =1, 2, 3, are chosen in such a way that
5\,, and § n are asymptotically unbiased and have the smallest genera-
lized variance among all unbiased estimators of the above form.
The determination of these coefficients can be carried out very
efficiently by the least squares method.

Theorems 4 and 5 give us the asymptotic expectations, variance
and covariances of Xy, X;;* and Xy . The expectations depend
linearly, with known coefficients u, (p), #,(q), #3(p, g), on the
unknown parameters A and &, and the variances and covarian-
ces are known up to a scalar factor 6 2.

All the conditions therefore exist for the application of the
generalized least squares theorem (cf. Lloyd: “Generalized Least-
Square Theorem in Sarhan & Greenberg [ 13, pp. 20-27]).

Following Lloyd, written in matrix form, we have:

A 2
EXo)=(1:a) L ; Var(é’o)l’%V (3.14)
where for brevity we denote
PX;\; ] -1- “11(17)

Xo=|Xym|s 1=|1|, a=|us(p. @

X" 1] 12(9)

and
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Solving the normal equations

o1(p)
7 013(P. @) 0u(p Q)
03(2, 9)
=los(p. ) —Z=p— 0up @
2
0,(9)
0a(p. @) 0np @) i
I q
repn+rows,=1rex,
Lo, +@Qab,=d 2X

we obtain the estimators

where

and

Hence

and
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e T,
Sn =-1-_’11’_Y0
Q=v-!

d='Q @a)-(1’Q 2)2

C=lcycrc3]=—a@T

d=[d dyd3]=1'T

(3.15)

(3.16)

3.17)

(3.18)

(3.19)

(3.20)

3.21)

(3.22)



Inasmuch as A, and 8, are least-square estimators of A and &,
they are also the best linear estimators of A and &, based on
Xy, Xy y>and X"

Remark. The above least-squares method can be employed to
obtain the estimators of A and 8 in the more general form:

n

I M~

-~ r -
¢ X, n=§ d; X;

i=1 i=1 .

where X;, i=1,...,r can be any linear combinations of order sta-
tistics (including a single order statistic itself) which satisfy (3.14).
So far, we have investigated procedures, based on X ,f,, X N M and
Xj}*, for jointly estimating unknown parameters A and 6. If we
assume that one of the parameters is known then the least - squares
method can be adjusted by an obvious way to estimate the remain-
ing unknown parameter. Such cases were considered in [10].

4. Efficiency

Following Cramér [6, p. 493], for a regular density fy = %f ( > :S 2 )

we define the joint asymptotic relative efﬁciehcy (A.R.E.) of the esti-
mators N, and & as

e*(p, Q)=n1if2 [n? AG]! 4.1)
where
G=Var(\;) Var(8;;) — Cov? (A}, 87) (4.2)
and
2 2
v || g | Rk | g PRl Al | g
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is the determinant of the information matrix corresponding to the
density fy. We note that in our case A can be further simplified
yielding

1

A= FAI 4.4)

where

2 2
_ . |lr@ 1Z) } L lr@ { 12 }
A, E[————I(Z)} E [1 +—f(Z) VA E {_——f(Z) 1+ ——f(Z) Z\|| 4.5
using for brevity f’=df/dZ and Z=86"1(X — N).
It can be shown easily that
ol (p)oi(q)

p(1—q)
[2(q) — 1y ()P

=

(4.6)

and hence

1 [ — pi (PP

* = .
e (p, ll) A] i-ﬂ'f(p) Ui(q) -02 (p q)]
12 ’

“4.7)

p(1—-gq)

Similarly we derive the formula for the joint A.R.E. of 7~\n and 5,,,
denoted here by e(p, q). Using the notation of the previous section,
for large n we have:

- 2 dQa
Var (\,)) =~ —~ > 4.8)
. s2 1’2l
_ Var (6,) = - > 4.9)
- - 52 QW
and Cov (A, 6,,)2—7-—6—— 4.10)
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Therefore, the joint A.R.E. of 5\,, and S,, is

e(p, q)=fl— (4.11)

The efficiencies e*(p, g) and é(p, gq) depend strongly on the
numbers p and g, so one can look for the optimal values of p and g,
say p* and g*, which maximize the above efficiencies.

5. Examples

In this section we illustrate the estimation procedures developed
in Section 3 on a number of examples. Throughout this section all the
required assumptions are satisfied and only complete samples are inves-
tigated. Right and left censored samples, treated in a similar manner,
are considered elsewhere [10]. The search for optimum p* and g*
was carried out very simply —tabulating efficiency for various values
of p and q and then selecting the best possible combination.

Example 1 — Gumbel distribution

The estimators of A and 6 for the Gumbel distribution

F[xgx}:cxp —exp[—'x—gk} ;o Tee<x<ee (5.1

are determined by (3.5) and (3.6) respectively, where we have

1 (7 -x
yl(p)=7 xe*e®  dx (5.2)
and
Ha(q)= 7= / xe*e ax (5.3)
q xq
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with the notation xp = log (—log(p)) and xq="log (—log(g)). The
integrals require numerical integration and the values of u,(p) and
M, (q) are given in Table 1. The values of of(p), a%(q) and 0,(p, q)
are given in [10]. The determinant of the information matrix, A, was
obtained by Tiago de Oliveira [14] and is A= 7?/6 §°. The joint A.R.E.
of Ay and 8, e*(p, q), was calculated for values of p =0.05 (0.05)
0.95 and g = 0.05 (0.05) 0.95, and is given in Table 2.

Clearly, the efficiency attains its maximum at the point p* =.2
and g*=.1, where e*(p* ¢*)=89%. In this case the sample tails
overlap and the “most efficient” estimates of A and 6 based on sample
tails are

Ar=0.461 Xy +0.539 Xi*
(5.4)
57 =0.598 (X* — Xn)

where Xy is the left sample tail mean based on the smallest 20% of
the ordered observations, and Xj;* the right sample tail mean based on
the largest 90% of the ordered observations. We get practically no dif-
ference in efficiency considering the non- overlapping casep =q =0.2;
here e*(0.2, 0.2)=88%. In this case we use XI"\",, the left sample tail
mean, based on the smallest 20% of the ordered observations and X;:",
the right sample tail mean based on the largest 80% of the ordered ob-
servations. In other words, we divide the ordered sample into two conti-
guous non - overlapping groups. '

Consider now the estimators 5\,, and 5,,. The truncated mean
M3 (p, q) can be obtained using the representation

13 (p. )= g5 [q81(@) —p #1(P)] (5.5)

The values of the joint A.R.E., é(p, q), of the estimators 5\,, and
5,, for the following values of p and g: p =0.05 (0.05) 0.90, g=p +
+ 0.05 (0.05) 0.95 are given in Table 3. From Table 3, it can be seen
that the efficiency attains its maximum at the point p*= 0.05 and
q*=0.40, where €(0.05, 0.40)=97%. Recall that the best estima-
te based only on sample tails has an efficiency of about 89%.
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Forp*=0.05 and ¢* =0.40 we find

Cl=0.12 d1=—0.27
c,=0.57 d,=-0.15
c3=031 dy= 042

Hence the best estimators of A and & based on means of three conti-
guous groups are

A, =0.12 X3 +0.57 Xy 5 +0.31 X5
and

8, ==0.27 Xy — 0.15 X 5 +0.42 X5

where X ; is the sample mean of the smallest 5% of the order statistics,
X" is the sample mean of the largest 60% of the order statistics, and
XNy is the sample mean of the remaining 35% of the order statistics.

Example 2 — Normal distribution

To conform with standard notation, we let A=y, and 6 =o0. In
this example the estimators based on sample tails of u and o for the
normal distribution N(u, 0?) are:

. M2@Xy —ui(p) Xp*
" K2(q) — p1(p)

(5.6)

and

0*= XI;*_XJ,\*I (5.7)
" ua(q) -k (p) '

The means u; (p) and u,(g) can be easily calculated, since

1 - —F¢ == *p/2
p.w 27 pm’el’ (5.8)
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where X, denotes the p- quantile of N(0, 1). By symmetry considera-
tions we have

Ha(@)=—1 (1 —¢q)

The computation of 63(p), 02(q) and 6 ,(p, q) is also not difficult.

The values of the joint A.R.E., e*(p, q), of the estimators u* and
a*, given by (4.7), where A, = 2, are reproduced in Table 4 for various
values of p and ¢: p = 0.05 (0.05) 0.95 and ¢ = 0.05 (0.05) 0.95.

From Table 4, it can be seen that the maximum efficiency is attain-
ed at P¥=0.8; ¢*=0.2, where e*(p* q¢*)=95% (overlapping case).
At this point the estimators (5.6) and (5.7) become

1
By = > Xy + X5

and
o,f= 1.43 (X;}*— X;\;)

where X,’C, the left sample tail mean, is based on the smallest 80% of
the ordered observations and X,;*, the right sample tail mean, on the
largest 80% of the ordered observations.

[t is interesting to note that in the neighbourhood of the point
p=¢q=0.5, where we have ¢*(0.5, 0.5) = 88%, the gradients of the
efficiency in p and g are very small. Even for p = 0.4 and ¢ = 0.6 we
have ¢*(0.4, 0.6) = 88%. In this case we do not use 20% of the middle
part of the ordered data, and the estimators coincide with those of
Abe [2].

The joint A.R.E. of the estimators ﬁ,, and 6,,, based on three con-
tiguous blocks of ordered observations, is given in Table 5. The efficien-
cy, only slightly improved, attains its maximum at the point p*= 0.2
and ¢* = 0.8, where we have €(0.2,0.8)=97%.

For p*=0.2 and ¢* = 0.8, we obtain
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;=02 d,=-036
;=06 dy= 00
C3=0.2 d3= 0.36

and then i, =0.2 Xy + 0.6 Xy 5 + 0.2 X3;" = X,

6,=0.36 Xy" — Xpy)
where Xy is the sample mean of the smallest 20% and X" is the sam-
ple mean of the largest 20% of the order statistics.

Clearly, &, is the sample mean and an efficient estimator of u.
The location - invariant estimator 6, coincides with the estimator pro-
posed by D’Agostino & Cureton [7], and by Abe [2], whose efficiency
was found also to be 97%.

Example 3 — Logistic distribution

We consider the estimators of A and & determined by (3.5) and
(3.6) for the logistic distribution having c.d.f.

-1
-2 -2
F{xs J=[l+exp§—x—6—” , —e<x <o  (5.9)

The left and right tail means u,; (p) and u,(q) are respectively:

#1(p)= 5 log (1 — p) — log [1—;—’1} (5.10)

and

(@) =—m, (1 —qg)=-— logq+log[qu] (5.11)

1
l1—gq

The computation of ozl(p) and 0,,(p, q), forp > q, requires a numeri-
cal integration.
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The values of the joint A.R.E. of the estimators A} and & are
given in Table 6. From Table 6 it can be seen that the maximum ef-
ficiency is attained at p*=0.7, ¢* = 0.3, where we have: e*(p* g*)=
=96%. At this point the estimators A} and 8,5 become

1
Ar= - (x;:’, + X"

87 =0.56 (Xp;" — Xp)

where Xy is the average of the smallest 70% of the ordered observa-
tions and Xy;" is the average of the largest 70% of the ordered observa-
tions. Note that in the neighbourhood of p* and ¢* the efficiency is
again very insensitive to changes in p and g.

Considering only non - overlapping tails, we obtain the best efficien-
cy at p=qg=0.5, where ¢*(0.5, 0.5)=90%. In this case XIT, and Xj;*
are the averages of the smallest 50% and largest 50% of the ordered
data.

In Table 7, the values of the joint A.R.E., é(p, q), of the estimators
A, and &, are shown. Clearly, the efficiency attains its maximum
around the point p*=0.3,¢* = 0.7 where we have é(p, q) = 98% .
Forp*=10.3, ¢*= 0.7 we get

Cl=.15 d1=—0.25
c,=.70  dy= 0.0
C3=.15 d3= 0.25

and hence ) )
A, =0.15Xy +0.7 Xy 5 +0.15 X"

5, =025 X" — Xp)
where Xy and Xy™ are the sample means of the smallest and largest

30% of the ordered data, respectively. X N, M is the sample mean of the
remaining 40% of the ordered observations.
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Example 4 — Weibull distribution

In the last example we shall consider the Weibull distribution with
the shape parameter § and the scale parameter 6, corresponding to a
random variable W, having the c.d.f.

8
Fy(x;8,0) =1—exp —[—g—] z; x=0 (5.12)

=0 ; x<0

for >0, and 6 > 0. This distribution is not a member of a scale-
location distribution family, but it is well known that the random varia-
ble X =—1log W has the Gumbel distribution (5.1) with parameters
A=—logfand 6 =41

Let W) <...<W,) denote an ordered sample of size n from the
Weibull distribution with c.d.f. (5.12).

We define the statistics W% and Wy* as follows:

w5 =L IZVD —log (W
VW og (W(;)
and
Kk __ 1 n
Wi =gt~ 1oE W)
or equivalently
. N 1/N
and
n 1/n-M
Wr*=—log| T W, (5.14)
M i=M+1 D '

By Theorem 2, WX} and W;;* will converge in probability to
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P
Ki)= 7 | g ds (5.15)
J 0

and

nig)=

1
T—gq ./‘; g(s) ds (5.16)

respectively, as n = oo, where g(s) is now defined as
- 1
g(s)=—log (Fy' (s))=—log 0 — 7 log (— log (1 — ) (5.17)

and Fp,' (s) denotes the s- quantile of (5.12).

We obtain

W3(p)= k2 (1 - p) — log 0 (5.18)

and

u3@=Fu (- )~ log 6 (5.19)

where u;(1 — g) and u,(1 — p) are already given by equations (5.2)
and (5.3) respectively, and their values can be read from Table 1.

Then, it is easy to show that our asymptotically unbiased estima-
tors, based on tails, of the parameters 6 and (3, are:

0% =ex ‘-— Wyt (1=p)—Wyp, (1 -9)
e I e T

(5.20)

«_ H2(—p)—p, (1 -q)
T

(5.21)
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Let us denote by e;,(p, q) the joint A.I.L. of 0: and ﬁ:. Not
surprisingly, since the transformation — log (-) reverses the order of
observations, we get:

en(p, )=e*(1—p, 1 —q) (5.22)

where e*(-,) is the A.R.E. of A; and §,; in the Gumbel case. In fact we
have: Wy =X;*, and Wy*=X,_,. Thus the maximum efficiency is
also 89%, reached at the pointsp*= 0.9, g* = 0.8.

The “reversed” results also hold for the case of three contiguous
groups of ordered observations.

6. Concluding remarks

(a) A question arising in practical applications concems the determi-
nation of a reasonable sample size n, as required for successfull
application of an asymptotic method.

For the Gumbel distribution this question has been investigated
in more detail in [10]. Random samples of Xy and X5* (for p =
=gq=.2) were generated for various values of n and it was found
that for sample sizes close to sixty the distributions of X3, and X",
and hence of )\,T and 8;;, can be very well approximated by the
normal distribution.

The estimators A and 7~\,, are unbiased for any sample size n,
provided that the underlying distribution is symmetric and the
same number of observations is used in each tail. In this case, since
l_?(Xx,) t uy(p) (and EQX; X)) 4 py(1 — p)), the estimators 8, and
0, underestimate the scale parameter 6.

For instance, if n =20 and the underlying distribution is normal,
we have N=16, M =4 (optimum spacing foro, isp*=1—q*=
= (.8) and the unbiased estimator of o is then

ok =1.5018 (X;* - X7y (6.1)
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(b)

()

112

since E(X T6)=—0.3329. The expectation E(X ;"6) is computed
using the table of expected values of order statistics (cf. Teichroew
in Sarhan & Greenberg [13, p. 193]). For comparison, in Example
2 we derived u;(.8) =— 0.3499 and o,y = 1.4290 (X;;* — X¥). It
seems to us that by introducing a correction factor n/(n — 1)even
this small bias could be practically eliminated. For small sample
sizes we suggest replacing o,’f , given by (5.7), by

% [ n } X;;* — X;
n

n—1] p,(q)—u,(p) 6.2)

Thus, for 7=20 and p*=1—g*=0.8 we get 03, = 1.5041(X; =
— X16). Clearly the difference between 0}, and 03 is very small.

If an underlying distribution is symmetric and ¢g=1 — p, i.e. sym-
metric tails are used, then it can be shown that A} and §,; are
asymptotically uncorrelated and therefore asymptotically indepen-
dent. In this case, the construction of confidence intervals is simple.
We also note that for symmetric distributions the optimal selection
of tails is also symmetric, i.e. ¢*=1 — p* The same conclusions
are also true for A,, and §,,.

The estimators examined in the preceding sections are special cases
of a large class of estimators having a form

n
5= 2 ¢ Xa (6.3)

i=1

i
n+1
selected weight function, U, became asymptotically efficient [5].
Therefore, our estimators utilizing the means of optimally chosen
blocks of order statistics may be regarded as approximations to
(6.3). In fact, we approximate the optimal weight function J(-) by
an optimally selected step function.

It has been shown that forc; =J ( ), where J(°) is a suitably
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Table 1 Percentage points and tail means

for the Gumbel distribution.

P X w1 (p) H, (p)
0.02 -1.364 -1.574 0.621
0.04 -1.169 -1.416 0.660
0.06 -1.034 -1.310 0.698
0.08 -0.927 -1.227 0.734
0.10 -0.834 -1.158 0.770
0.12 -0.752 -1.097 0.805
0.14 -0.676 -1.042 0.841
0.16 -0.606 -0.992 0.876
0.18 -0.539 -0.945 0.911
0.20 -0.476 -0.901 0.947
0.22 -0.415 -0.860 0.983
0.24 -0.356 -0.820 1.0138
0.26 -0.298 -0.782 1.055
0.28 -0.241 -0.746 1.092
0.30 -0.186 -0.710 1.129
0.32 -0.131 -0.676 1.167
0.34 -0.076 -0.642 1.205
0.36 -0.021 -0.609 1.245
0.38 0.033 -0.577 1.284
0.40 0.087 ~0.545 1.325
0.42 0.142 -0.513 1.367
0.44 0.197 -0.482 1.410
0.46 0.253 -0.452 1.454
0.48 0.309 -0.421 1.499
0.50 0.367 | -0.391 1.545
0.52 0.425 -0.361 1.593
0.54 0.484 -0.330 1.643
0.56 0.545 -0.300 1.694
0.58 0.607 -0.270 1.747
0.60 0.672 -0.240 1.803
0.62 0.738 -0.209 1.860
0.64 0.807 -0.179 1.921
0.66 0.878 -0.148 1.984
0.68 0.953 -0.116 2.051
0.70 1.031 -0.085 2.122
0.72 1.113 -0.053 2.197
0.74 1.200 -0.020 2.277
0.76 1.293 0.013 2.363
0.78 1.392 0.047 2.455
0.80 1.500 0.082 2.556
0.82 1.617 0.118 2.667
0.84 1.747 0.156 2.791
0.86 1.892 0.194 2.930
0.88 2.057 0.235 3.089
0.90 2.250 0.277 3.277
0.92 2.484 0.323 3.505
0.94 2.783 0.372 3.798
0.96 3.199 0.426 4.209
0.98 3.902 0.489 4.908
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* * *
Table 2 Joint A.R.E. e (p,q) of the estimators )'n and 6n ~-Gumbel distribution

Q=10.050.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

P = 0.05 67 68 68 68 68 67 66 65 64 62 60 583 55 52 48 43 37 30 19
P =0.10 31 81 81 8 8 8 8 79 77 76 74 71 68 64 59 54 47 38 25
P = 0.15 87 8 8 € 86 8 8 8 83 8 79 76 73 69 65 59 51 42 28
P =0.20 89 89 88 8 87 8 8 8 8 83 8 78 75 71 67 61 53 43 29
P =0.25 89 89 88 88 87 87 8 85 8 83 8L 78 75 72 67 61 54 44 30
P = 0.30 88 88 88 87 86 8 8 84 83 8 79 77 74 71 66 61 54 44 30
P =0.35 86 8 8 8 8 8 83 8 81 79 77 75 73 69 65 60 53 43 30
P = 0.40 83 8 8 8 83 8 8 79 78 77 75 73 70 67 63 58 51 42 29
P = 0.45 80 81 82 81 8 8 78 77 75 74 72 70 68 65 61 56 50 41 29,
P =0.50 76 78 79 79 78 77 76 75 73 71 69 67 65 62 58 54 48 40 28
P =0.55 72 75 76 76 76 75 74 72 71 69 67 64 62 59 56 51 46 38 27
P = 0.60 68 71 73 74 73 73 71 70 68 66 64 62 59 56 53 49 44 36 25
P = 0.65 64 68 70 71 71 70 69 68 66 64 62 59 56 54 50 46 41 34 24
P =0.70 59 64 66 68 68 68 67 66 64 62 59 57 54 51 48 44 39 32 23
P =0.75 54 59 63 65 66 66 65 64 62 60 57 55 52 49 45 41 37 30 21
P =0.80 49 55 59 62 63 64 63 62 60 58 56 53 50 47 43 39 34 28 20
P = 0.85 43 51 56 59 61 62 62 6L 59 57 55 52 49 45 41 37 32 26 19
P = 0.80 37 46 53 57 60 61 61 61 59 57 5S4 51 48 44 40 36 30 25 17
P =0.95 31 43 52 58 62 63 64 63 61 59 56 53 49 45 40 35 30 23 16

Table 3  Joint asymptotic relative efficiency &(p,q), of the estimators in and Sn--Gumbel distribution

Q = 0.10 0.15 0,20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
P = 0.05 Bt B8 92 94 96 97T 97 97 96 95 94 92 90 8 B 8 8 76
P = 0.10 " BT 90 92 94 95 96 96 96 96 96 93 94 93 92 9 89 86
P = 0.15 **oo#% 89 90 P 93 93 94 94 95 95 94 ¥ 9% 93 92 9 9%
P = 0.20 #*o#% % B9 90 90 91 9 2 R 92 R R %2 R R 9N 99
P = 0.25 #* #% % ¥ B8 B8 8 B89 B89 8 90 90 9% 9 90 9% 89 89
P = 0.30 *M % A% xx ®® B6 B85 86 87 87 87 8 87 87 87 87T 87 87
P = 0,35 *rOER %R B8 %% %% B4 B4 B4 B4 B4 B84 B4 B4 B4 B4 B4 84
P = 0.40 ook w& ow@ #x #% #% g 8| 8t 81 681 8 80 80 8 8 8
P = 0.45 AR ER KR o¥x M w w79 B TT TT TT OTT TT 76 76 16
P = 0,50 EEORR BE BE OB RE WX X R 75 T4 4 T3 T3 T3 T3 T2 T2
P = 0,55 WROOMR MR E2 AR M wx ¥R ER % 71 71 70 69 69 68 68 68
P = 0.60 B %3 ES HE BR #E ¥R RR KE M% ¥% 6T 66 65 65 64 63 63
P = 0.65 e mE ¥R OER ME RR X AR X X% we #4463 61 60 60 59 58
P = 0,70 BEOER EA RE AR #E NN MR RR RE KR M ¥ 58 56 55 G54 53
P=0.75 HE RS BE MR RE B ER RR RS RR AR FE AR #% 52 50 49 47
P = 0.80 HEORE MR BN RE BE BR ER B2 BR H% R AR AR B A5 43 42
P = 0.85 #E BRSO ORE RR O ORE RE BE AR AR RER FE RE RE BR ¥ #8383 36
P = 0,90 EEOEE R MR B BE #E NE R EE EE HE RS KR X% BR ® 29
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* * *
Table 4 Joint A.R.E. e (p,q) of the estimators u and 9, --Normal distribution

Q=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

o

]

]

L]

]

o

o

= 0.05 42 43 45 46 47 48 49 49 50 50 50 49 48 47 45 42 38 32 23
= 0.10 56 57 58 60 61 63 64 65 66 66 66 66 65 64 61 58 53 45 32
= 0.15 65 65 66 68 69 71 72 74 75 75 76 75 75 73 71 67 61 53 38
= 0.20 72 72 72 73 74 76 77 79 80 81 81 8 80 79 77 73 67 58 42
= 0.25 78 77 77 77 78 79 81 82 83 8 85 8 8 8 80 77 71 61 45
= 0.30 82 81 81 81 8 8 8 8 8 8 8 8 86 85 83 79 73 64 47
= 0.35 85 84 84 8 83 8 8 8 8 8 8 8 87 86 84 80 75 65 48
= 0.40 88 87 86 86 85 85 86 86 87 87 88 8 88 87 85 8l 75 66 49
= 0.45 90 89 88 88 8 87 8 87 87 88 8 8 88 87 8 8l 76 66 50
= 0.50 91 91 90 90 89 88 88 88 8 88 88 87 8 8 84 8L 75 66 60
= 0.55 92 92 92 91 90 90 89 89 88 88 87 8 8 85 83 80 75 66 50
= 0.60 92 93 93 92 92 91 90 89 89 88 87 8 85 8 82 79 74 65 49
= 0.65 92 94 9% 93 93 92 91 90 89 88 87 86 84 83 8L 77 72 64 49
= 0.70 92 94 9% 94 93 93 92 91 90 88 87 85 8 82 79 76 71 63 48
= 0.75 90 93 9% 95 94 93 93 92 90 89 87 85 83 81 78 74 69 61 47
= 0.80 88 92 94 95 95 94 93 92 91 90 88 8 83 8L 77 73 68 60 46
= 0.85 8 91 93 94 94 94 94 93 92 90 88 8 84 81 77 72 66 58 45
= 0.90 80 87 91 92 93 94 94 93 92 91 89 87 8 81 77 72 65 57 43
= 0.95 72 80 85 8 90 92 92 92 92 91 90 88 8 8 73 72 65 56 42
Table 5 Joint asymptotic relative efficiency &(p,q) of the estimators ﬁn and an--Normal distribution

Q = 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0,65 0.70 0.75 0.80 0.85 0.90 0.95

P = 0,05 59 67 T3 T8 & 8 8 91 92 93 94 94 94 92 90 87 8 T2

P = 0.10 ** 68 T4 T8 & 8 8 90 92 94 95 95 96 95 A 8 8

P = 0.15 * % 75 78 8 8 8 90 92 93 95 96 96 96 96 95 92 87

P = 0.20 * ooex % 79 & 84 87T 89 91 93 94 95 96 97 97 96 94 90

P = 0,25 % wx  ®x g 84 8 8 90 R 93 % 95 9% 97 %6 %5 92

P =0.30 ¥ ¥ wxx  wx  #* 85 86 8 8 91 R 94 95 95 9% 96 96 94

P =0.35 #oo%r % ax % &% 86 87 B89 90 91 92 94 94 I 9% 95 94

P = 0.40 %o ok ok e #® % g7 B8 B9 90 91 R 93 94 95 95 9N

P = 0.45 R M % ¥k 4% 4% ¥ 83 88 B9 90 91 92 93 93 94 93

P = 0.50 #%  #% A% Ex WR %% ¥x  #% % 83 88 89 90 91 Q2 R 92 9

P= 0’55 ko d ¥ - - ** *H % Esd % sl m 87 w m 89 w w 91

P= o'w ke d Rl 2l Ead % % Lol ¥ % Lol % 86 86 86 87 m 88 m

P=0.65 #% AR ER RR R RE ER R MK #E #%  #% B85 B4 B4 B85 85 86

P - 0."0 *i * ol R kel % *H o % *a Ead L2 % & & 8 & &

P= 0."5 ) »a Lad e - - 3 i R #% *E k2 g 5 2] 79 78 78 'm

P - o.m - % R 2l ¥ e *® E Al e w5 - L] - Ea 3 - 75 7‘ 75

P - 0-85 e * - - *u L4 d *E % Ead LAl Ll - ka2 - - Ead 65 61

P= 00% L2 g - - - e Led Y * *w e % »n e e Ead e 59
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* * *
Table 6 Joint A.R.E. e (p,q) of the estimators An and Gn —~Logistic distribution

Q = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0,65 0.70 0.75 0.80 0.85 0.90 0.95
P = 0.05 332 33 34 34 34 34 M 3B 2 3 30 28 26 23 21 17 13 8
P = 0.10 4 4T 48 49 50 50 50 50 49 48 47 45 43 40 % R 27 21 13
P = 0.15 57 57 58 59 60 61 61 61 60 59 58 56 55 50 46 41 35 27 17
P=0.20 66 66 67 68 68 69 69 69 69 68 66 64 61 S8 53 48 41 R 2
P = 0.25 ™ T3 TP T4 T5 T5 1% 16 T5 M T3 T 68 64 59 53 46 36 23
P = 0.30 79 79 79 79 80 60 8 B8 8 T T 6 T3 69 64 58 50 40 26
P=0.35 85 85 84 B84 B84 B4 B4 B4 B4 B8 B T9 76 T3 68 61 53 43 28
P = 0.40 87 87 87 B8 8 8 8 87 87 B8 8 & T T6 T 64 56 45 N
P = 0.45 89 90 9 9 91 91 90 9% 89 8 8 84 8 T T3 66 58 47 3
P = 0.50 91 9% %2 93 93 93 92 %R 91 9 8 86 85 T9 T4 68 59 48 R
P = 0.55 92 93 94 94 94 94 94 93 92 9N 89 87 B84 8O T5 69 60 49 33
P = 0,60 91 93 94 95 96 96 95 94 93 92 90 87 84 B T6 69 61 50 34
P = 0.65 90 93 94 95 96 96 96 95 94 92 90 8 84 80 T6 69 61 50 34
P = 0.70 8 91 93 95 9 9 96 9% 94 93 91 8 84 8 T5 69 61 50 34
P=0.75 84 89 R 9 95 96 96 9 94 93 91 88 84 BO T5 68 60 50 34
P = 0.80 79 8 B 92 94 95 95 95 94 93 90 8 8 T9 T4 6 59 49 H
P = 0.85 T3 80 8 B8 92 93 94 94 94 92 9% 87 84 T9 T3 67 58 48 33
P = 0.9 65 74 B 85 8 91 93 g3 ¢3 9 90 8 83 T T3 66 57T 471 32
P = 0.95 55 65 T35 T9 8 8 9 91 % 91 B8 8 8 T T3 66 57 46 3

Table 7 Joint asymptotic relative efficiency &(p,q), of the estimators ).‘n and En—-Logistic distribution

Q = 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0,85 0.90 0.95
P =0.05 54 64 T2 TB 83 BT 9 92 94 94 93 92 8 8 8 T5 6T 55
P = 0.10 ** 67 T4 80 8 8 91 93 95 9 95 95 93 91 8 8 T6 67
P = 0.15 # w2 76 B1 8 89 92 94 95 96 97 % 95 9% 91 8 8 T5
P = 0.20 * %% ¥ g 86 B9 92 94 96 97 97 97 97 96 9 91 87 B
P = 0.25 *% %R w87 90 92 94 96 97 97 98 98 97 96 94 91 86
P = 0.30 # mR oa% R ¥ 90 92 94 95 97 97 98 98 9B 97 95 93 89
P=0.35 #oORR BR O A® ¥ ¥ g2 04 95 96 97 98 98 98 97 9% 95 9
P = 0.40 2 mE o e ¥R %% ®R 94 95 96 96 97 97 97 97 97 95 93
P = 0.45 EORRER R A oW "™ 94 95 96 96 97 97 97 9% 96 N
P = 0,50 ®EOEE R omR %R ax M M ¥ 94 05 95 95 96 96 95 95 N
P = 0.55 BERE R o &R Rk B we W w0 Q4 04 94 94 94 94 93 92
P = 0,60 - i £ T ) - e - £ e - - = g2 92 92 7] 92 91 90
P = 0,65 e e E2d R - L] e - - E 2 L #* g0 9 89 89 88 87
P= O.W - R - e - e - - - - * % % 87 “ 85 ﬁ 63
P = 0,75 #E OB BB B ER BN M B EE R ¥» % B¢ 8 g 81 80 T8
Pm o.w - - L. - L ¥ - e - e »H *e £ 4 *n - 76 "4 ',2
P= 00&5 £ ) k. 2 - - e e - - - - - * - »e - 61 “
Pm o.m e - - *n e k. ) L] e e HE - h - e - -t 54

118



