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SUMMARY

Lehmann in [4] has generalised the notion of the unbiased estimator with
respect to the assumed loss function. In [5] Singh considered admissible estimators
of function A" of unknown parameter A of gamma distribution with density
SexIA, lg)=7\b“ e ™ xP-1I\(b), x > 0, where b - known parameter, for loss func-
tionL W, AT =Q 7 - AT\

Goodmann in [1] choosing three loss functions of different shape found
unbiased Lehmann-estimators, of the variance 0% of the normmal distribution.

In particular for quadratic loss function he took weight of the form K(0%)=C
and K(02) =(0?)"? only.

In this work we obtained the class of all unbiased Lehmanns-estimators of
the variance A?> of the exponential distribution, among estimators of the form

n
a(n) (T X;)* —ie functions of the sufficient statistics - with quadratic loss func-
1
tion with weight of the form K(A?) = C(\%)“?, € > 0.
AMS 1970 subject classifications. 62 F10, 62 BOS.

Key words and phrases. Lehmann -estimators, loss function, minimum of
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RESUMEN

Lehmann en su trabajo [4] generalizd la idea del estimador sin vias en rela-
cién a la aceptacion de la funcion de pérdidas. En el trabajo [S] Singh considera
de estimadores admisibles para la funcién A~" g rametro desconocido A de la dis-
tribucion de gamma, de densidad f{x|\, b)=A’"1 e~ ™ xf’”‘ [T®),x>0,b6>0
parzémetro conocido, de la funcion de pérdidas resulta L(A™", A" =(A"" =AY
A2

Goodman en su trabajo [1] acumulando 3 formas diferentes de funciones de
pérdidas encontr6 estimadores sin biases en el sentido de Lehmann de la variancia
de 0 de una distribucion normal, en particular para la funciéon de pérdidas
L(@©% 0*)=K(0%) (6> -07%) con los pesos, solo de la forma K(0%)=C,
K(0*)=(0%)2.

En su trabajo distinguida la clase de todos los estimadores sin biases obtenidos
en el sentido de Lehmann de la variancia A% en la distribucién exponencial, entre

n
los estimadores de forma a(n) (X X;)* —asi pues de la funcion estadistica suficien-
1

te— por una funcién de pérdidas al cuadrado con los pesos de la forma K (A?) =
=Cc(A\)4, Cc>o0.

Palabras y frases. Estimador sin vias en el sentido de Lehmann, funcion de
pérdidas, riesgo minimo, suficiente estadistica.

1. INTRODUCTION

In some problems concerned to an estimation of the parameter on
which depends probability distribution of searched random variable
there is essential a question about an error arisen from replacement of
true, but unknown, value of the parameter 6 by its estimator 6. There
is assumed that, so called, loss function L (6, 8) is an estimate of that
error. The loss function can be of different form dependéntly on the
purpose.

Assuming, that 0 is a real value of a parameter, the conditional
expected value of a loss function defines the risk R(0)=FE [L (0, )1 0]
of the estimator 6.

In the article there are given estimators (defined univalently in the
considered class of estimators) of a parameter A2, i.e., variance of the
distribution
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0 x<0

frxIN= (1)
-)lTexp (—%) x>0

minimizing the risk by defined loss function and estimators unbiased
with respect to the assumed form of a loss function.

The definition of an estimator unbiased with respect to a given
form of a loss function was introduced by Lehmann in the article [4]:

The estimator § of a parameter 0 is called unbiased with respect
to the loss function L (0, 0) if for every value of a parameter § € © the
risk R(6;)=E [L (0, 0,)] 0] attains a minimum for 8, = 6.

Using the Lehmann’s definition in the elementary way one can
prove the equivalence of the unbiasedness in the usual sense of the esti-
mator § and unbiasedness with respect to the quadratic loss function

L@, 60)=c(@ —0)*, where cER,
The density function (1) belongs to one - parameter class of distri-

butions of exponential type. It follows’ from [6, §2, 4] that minimal
sufficient statistics for this class of distributions is the statistics.

~

Il
- Mx
2

(2)

where X; (i=1, 2, ..., n) are independent random variables, each of
which has the distribution (1).

The notion of minimal sufficient statistic is not uniquely determi-
ned, what is well known, for each invertible function of minimal suffi-
cient statistics is also minimal sufficient statistics.

We have E(X)=A for random variable with the distribution (1).
Because of it, the statistics.
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is an unbiased estimator of the parameter A of the distribution (1). Sin-
ce for considered random variable Var X =A? = (EX)?2, then as a mini-
mal sufficient statistics, from which we make dependent seeking esti-
mators A? of the variance A2, we will assume

Y=(Z X, 4)
1

which is a function of a minimal statistics (2) sufficient for oneparame-
ter class of distributions (1); the invertibility of the function (4) is
assured by the condition (2) with X; = 0.

Finally, the class of estimators of the variance A?> of the distribution
(1) we define as follows

N=aY (5)

where ais a positive function defined on the set of positive integers.
In the following we will use the lemma, which is easy to prove.
Lemma. If each of independent random variables X; (i=1, ..., n)
has the distribution with the density function A(x;|\) = -51\— f % what

means that A is the parameter of the scale, then

_NEXIN
b= E(Y2IN)

where Y defined by (4) is independent from A for a fixed n.

2. Unbiased estimator of the variance N> of the exponential distri-
bution (1).
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Because of the parameter A of the exponential distribution (1) is a
scale parameter and the statistics (4) is homogenens of the order 2 with
respect to variables X; (i =1, ..., n), then we use the theorem [6: §3.6],
which establishes the form of an unbiased estimator for an arbitrary
power of a scale parameter in the class of homogenens statistics of an
arbitrary order r # 0. Since we estimate A%, then

- _ 1 n
N = nn+1) (? X)? 6)

is an unbiased estimator in the class (5).

It is easily to see, that this estimator is consistent. Since the statis-
tics (3)is an effective estimator of the parameter A of the distribution
(1), then, what is well known [3: § 17], there exists no effective estima-
tor for any other function of the parameter A, thus for A? as well.

Now it is worth to remark that the estimator (6) has another im-
portant property. We know, that the statistics (3) is sufficient for the
class of distributions (1). From the form of a density function of this
statistics we infer, on a base of Lehmann’s theorem [2: §7.1], that
one-parameter class of distributions of the exponential type of the
form (1) is a complete class with respect to the sufficient statistic (3),
and for complete class every function #(0) of an unknown parameter 0
permits no more than one unbiased estimator, which is a function of
the sufficient statistics for this class.

According to this considerations and the theorem [2, th, 7.1.2]
we infer that the statistics (6) is an optimal estimator of the function
t(\) =A? in the class of all unbiased estimators of the variance A? by
an arbitrary loss function which is convex with respect to an estimator.

Remark 1. If we assume a quadratic loss function of the form
k(A?) (A2 — \*)? with the weight K(\2)=1 then for a given unbiased
estimator the risk will be its variance. Since the estimator (6) is an op-
timal one in the class of estimators unbiased with respect to an arbitra-
ry loss function which is convex with respect to the estimator, then it
is an estimator with a minimal variance in the class of unbiased estima-
tors.
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Of course, there exist the other estimators of the variance A2,
unbiased in the usual sense, which are not still the functions of suffi-
. 1 =n
cient statistics,for example R Xz
1
Remark 2. It follows from an introduced in [2] optimality and ad-
missibility of estimator in a given class of estimators with a fixed loss

function, that every optimal estimator is an admissible estimator in the
class of estimators.

In this way the estimator (6) is an admissible estimator of the va-
riance of the distribution (1) in the class of estimators of the form (5),
with an arbitrary loss function which is convex with respect to the es-
timator.

R. Singh [5] studying estimators of a function of an unknown para-
meter A in the gamma distribution of the form.

0 x<O0
A=

o) e Axxb-1 x>0

with the known positive parameter b, found the form of admissible
estimator for the function g(A\)=A""(ris an integer) with the loss
function of the form:

~ 2
-r _ \-r
L (X—r, )\—r) — [LT"’}\—:I

3. Estimators of a variance A?> with a quadratic loss functions.

Let the loss function be of the form
L2, ) =K(\) (A — A2’ @)

We assume that the function K(A?), called a weight, is an arbitrary
positive differentiable function.
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The following theorem will be very useful.

Theorem 1. If the class of estimators of the variance of the distri-
bution (1) is of the form (5) and the loss function is of the form (7),
then the only estimator oy Y where

_ ]
NCEEE) ®)

O

minimizes the risk R (a|A?)=E [L (A2, A?)|\].

The easy proof of this theorem is omited. From the theorem 1 it
follows that the estimator

% = 1
n+2)(n+3)

(z'l' X;)? ©)

is an estimator of the variance of the distribution (1) minimizing, for
every value A2, the risk by the loss function (7) with an arbitrary but
fixed positive weight K (\?).

Corollary 1.1. The statistics’(9) is an optimal estimator of the va-
riance of the distribution (1) in the class of estimators (5) with the loss
function (7).

In spite of estimators (6) and (9) belong to the class of estimators
(5), they are optimal in different classes. So, for an arbitrary unbiased
estimator A2 # A2 (where A? is an estimator of the form (6)) with an
arbitrary loss function, which is convex with respect to the estimator,

RO <SRN

holds for every value A > 0.

Next, for an arbitrary estimator A2 #A? from the class (5) the
inequality

RO < ROZ|N)
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is true for every value A > 0, thus the estimator (9) minimizes the risk
in the class of estimators of the form (5) with the loss function of the
form (7).

Since both of considered estimators belong to the class (5), then
with the loss function (7) the relation

R(N|N) < RN \?)
holds for every value A > 0.

Corollary 1.2. The estimator (9) is a consistent estimator of the
variance A\? of the distribution (1).

Since, according to the considerations of § 2, the unbiased estimator
of an unknown parameter, which is the function of a sufficient statis-
tics, is uniquely determined in the complete class, then the estimator
(9) is not unbiased one in the usual sense.

Then there arises a natural question: Is it possible for this estimator
to be unbiased with respect to the loss function of the form (7) by the
adequately chosen weight K (A?) of the squared loss function?

Theorems 2 and 3 give the answer for this question.

Theorem 2. If there exists in the class (5) an estimator of the va-
riance A? of the distribution (1) which is unbiased with respect to the
loss function of the form (7) and o= g is given by the formula (8),
then the only function:

c

ROO=Tgey

CER, (10)

can be the weight.

Proof. After the differentiation the risk R ()\f | A%, o) with respect
to A} we infer
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IR\, ap) 3 dK (\?) \é nmn+1)
N2 - d\? (n+2)(n+3)

2
_ nn+1) ﬁ _ﬁ_
MCEPCEDREY +(>\2 *

2

A
2 __1_ n(n+1)
TN K("l)[m (n+2)(n+3)]

Since the estimator o Y is unbiased with respect to the loss func-
tion of the form (7), then for an arbitrary value of the parameter A2
the risk attains minimum for A} =\2, then the calculated derivative
equals to zero if )\21 =2, Then we obtain the differential equation

dKQ\Y) _ 2KQY
ar TN

the general solution of which is the function (10).

Theorem 3. In the class of estimators of the form (5) of the varian-
ce of the distribution (1), the only unbiased estimator with respect
to the loss function (7) with the weight (10) is the estimator o4 Y
where oy is defined by (8).

Proof. The derivative of the risk R (A%, a|A?) with the loss func-
tion (7) and weight (10) is equal to

dR(\L, alN?) 2 C()? [)‘f (n+2)( +3)] (n+1)
_ ol =L — o (n n nn
on? ap’ L

From its form we infer that this derivative equals to zero, and the
risk attains the minimum, for A2 =\? if and only if

_ 1 _
T+ (m+3)

o o
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This ends the proof.

Corollary 2.1. The risk responsive to the estimator (9) with the
loss function (7) does not depend on true value of the parameter \ if

C

and only if K(A?) =—0'\2—)2—.

Theorem 1 decides that the estimator (9), and only this one, mini-
mizes the risk with quadratic loss function (7) by an arbitrary but
fixed weight K(\?).

Theorems 2 and 3 imply that this estimator is unbiased with respect
to the loss function of the form (7) with the weight (10). Thus another
important problem arises: Are there, for some other weights K(A?), any
estimators unbiased with respect to the new loss functions? It is worth
to remind that Goodman found in the work [1] the unbiased estimator
of variance 62 in the normal distribution N(u, 02) (u-unknown) with
respect to the quadratic loss function, but with the weight (62)”2
(analogously to (A%2)"2).

Theorem 4. If there exists in the class (5) an estimator of the
variance of the exponential distribution (1) which is unbiased with
respect to the quadratic loss function of the form (7) and C, is such a
constant value that the equation of «
nn+1)(n+2)(n+3)C; 2 -2nn+1)(C;+Da+C;+2=0 (11)
has a positive solution, then the function

KQA%)=CQA»), CER., (12)

can only be the weight of the loss function (7).

Proof. The risk R ()\f A2, @) with the loss function (7) is equal to

RAMN, )=KAH)[n(n+1)(n+2)(n+3)A* ?
—2n(n+ AN a+ (A2)?]

Differentiating it with respect to A} we infer
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RN, @)  dK(\})
a? - an?

[+ DA +2)n+3)A\* o —

—2n(n+ DN N a+ A2 1+HKAH RN —2n( + 1) aN?]

From unbiasedness with respect to the loss function of the form
(7) it follows that for every value A? this risk attains a minimum for
A2 =22 and simultaneosly for A} =A? the considered derivative equals
to zero, what implies the differential equation

1 dK(7\2)___ 2n(n+Da—2 1
K(\?*) d\? nn+)(m+2)(n+3)2—2n(n+Da+l N

where the denominator of the second fraction on the right side in the
last equality is positive for all . Since from assumption, « is a positive
solution of the equation (11), then the first fraction on the right
side in that equality is equal to C;. Next, it is easily to prove, that the
general solution of the obtained differential equation is of the form
(12).

We have yet to prove that there exists a constant C, such that the
equation (11) has a proper (it means - positive) solution.

Let us consider some cases.

a) C; =0. The equation (11) is in this case of the first order, and
the solution of it is of the form

I S
nn+1)

b

a:

The estimator « Y from the class (5), discussed in §2, is an un-
biased (in the usual sense) estimator of the variance A? of the exponen-
tial distribution (1), hence it is unbiased with respect to the quadratic
loss function with a constant weight.

b) C; =—2. Then a=0 (we reject it) and o =0, defined by (8)
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are the only solutions of the equation (11). Hence according to the
theorem 3 the estimator oy Y is unbiased with respect to the loss func-
tion of the form (7) with the weight (10).

c) Cy#0, C, #— 2. Then the discriminant of the equation (11)
equals to

A==4n(n+1)[2Q2n+3)Ci1+4Q2n+3)C,—n*—n] (13)

It is no negative if and only if

n+5n+6
G+ 1< |/ In+6

Then v/ 1.2 is an infimum of the set of numbers of the form

'n2+5n+6 . . e .
l//W—, where n is an arbitrary positive integer, and this

infimum is attained if n = 1. Thus the equation (11) has two real solu-
tions for every n € N if C, belongs to the union of intervals

(-1=v1.2,-2), (-2,0), (0,—1+1.2) (14)

[t is easy to be proved, that with such a constant C; the equation
(11) has got either positive solutions (the first and third interval) or
the solutions are of distinct signs (the secoud interval).

In this way the theorem is proved.

Theorem 5. If a loss function is a quadratic function with the
weight K(A\2)=C(\?)¢1, where CER, and C, is a constant value from
one of the intervals (14) then only the estimator a; Y, where

C+2
a =
L+ 1N+ D)V D+ n—42n + 3)C,—2(2n + 3)CE]

(15)
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is an unbiased one in the class (5) with respect to the assumed loss
function.

Proof. After easy calculations we can write that

AR (N2, al \2) e a2’
— e DT G+ 5| -
l B

)\2
—2n(n+ l)(Cl+l)T;-+n(n+l)(n+2)(n+3)oz2 G

We seek such an a that the risk attains a minimum for A =22,
The discriminant of the quadratic polynomial with respect to )\f/)\z
in the last squared bracket is

| A =a?[4nt(n+1)2(Cy +1)2—4n(n+1)(n+2)(n+3)(C, +2)C]
and using (13)
A =a? A
From the form of the derivative we infer, in an easy way, taking

into consideration the value C; from suitable intervals, that the risk
R(\?, a| \?) attains a mihimum for

A a2n(+ 1D (G + D +VA]

A2 2(Cy +2)

for an arbitrary but fixed o > 0.

This minimum is attained for 7\3 =A? if and only if the right side
of the last equality is equal to 1, and next if and only if = «a;, where
a, is given by (15).

Remark 1. It is easily to verify that the coefficient (15) is a solu-
tion of the considered equation (11).
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Remark 2. For each C; belonging to one of the intervals (14) the
right side of (15) is positive.

Remark 3. For an arbitrary C; from one of the intervals (14) the
estimator of the form

N =g (2 X)) (16)
1

where «,, given in the formula (15), is unbiased with respect to a
quadratic loss function with the weight K(A2)= C(\2)¢1, CER,.

Corollary 5.1. The statistics (16) is a consistent and assymptotically
unbiased estimator of the variance of the distribution (1).

The results of §2 and theorem 3 and 5 imply that for every
C,e<-1 -v/1.2 ;-1 +v1.2> we can determine an estimator of
the variance of the exponential distribution (1) in the class (5) which
is unbiased with respect to the quadratic loss function with the weight
K(\?)=C(\)“1, CER,. For each of those estimators there is adjusted
a risk; it is worth to convince oneself, whether such a weight exists,
it means whether there exist such a constant C; and adequate to it
«, such that for an arbitrary but fixed value A? the risk corresponding
to this estimator «,; Y, which is unbiased with respect to the quadratic
loss function with this weight, is minimal.

The interesting of us risk is of the form

Cn+6)
n+2)(n+3)

Cl ==2

A2)C*2 [02(Cy) n(n +1)(n+2)(n +3) —
R(CIN)=(—2a(C)n(n+1)+1]C

C, — defined by (14)
«(C,) — defined by (15)

C4n+6)

4 =
nn+1) X ¢, =0
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It is not difficult to be proved, that the function R (C;|\?) is
continuous at points C; =0 and C; =— 2.

Assume now that C; €E<-1-v1.2;-1 +V1.2>.

The derivative of the function R (C; | N?) is

2
aR(aCCIII)\ ) =C()\2)Cl+2 ;ln)\z [az(Cl)n(n+1) n+2)(n+3)—
—2“(Cx)n(n+l)+1]+213%‘—)n(n+1)(n+2)(n+3)-
1 1 a7
X"+ +3)

Now we verify the necessary condition for an existence of an extre-
mum: If C, is such a constant value, for which the risk R(C; | \?) attains
aminimum for an arbitrary value A2, then C, cannot depend on A2, thus
it has to be

2CHnmn+n+2)(n+3)-2a(C)nr+1)+1=0

da(Cy) 1 .
dc, I:"‘(Cl)“ CEPICE: 3)]’0

Since the discriminant in the first equation A=—4n(n +1)
(4n+6)<0 for every C;, then there exists no C; such that the first
equality is fulfilled.

In this way there exists no weight of the form K(\?) = C(\? )t of
the quadratic loss function such that the risk - for every but fixed
value A2— corresponding to the estimator, which is unbiased with
respect to this form of the loss function, is minimal in the class of all
risks corresponding to all other unbiased estimators with respect to
the quadratic loss functions with the other weights of considered form.
Considering the first component and both factors of the second compo-
nent in the sum in the main brackets of the equality (17) we infer.
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I a2 CH)nmn+1D)(+2)(n+3)-2a(CHnn+1)+1>0
forevery C; from<—-1-v1.2, -1 +v/1.2>,

<0 for C;EL-1-vV1.2;-2)

1
n+2)(n+3)

I alC)- =0 for C; =—2

>0 for C; €(2,-1+V1.2>;

da(C,) §>0 for C; €E<-1-V12;-2)U(=2;-1+V12>

m —
dCy =9 for ¢, =-2

Taking into consideration the relations I, II, III we can make sure
of the sign of the derivative of the risk function R (C;|A?), and simul-
taneously of the monotonicity of this function in following cases:

R (C, N
a) A€ (0, 1) and C; €<=1-v/1.2,—2>. Then gcnl ) <o,
1

what implies that the risk R (C, | A?) is a decreasing function.

OR (C,IN?
b) AE(1,)and C; €<-2; —1+V1.2>. In this case ——_(aé| )So
1

and the risk R (C;|A\?) is an increasing function.

From above relations if follows that in the case a) the risk attains
a minimum at the right end-point of the interval <—1—-v/1.2, —2>,
but in the case b) at the left and-point of the interval <—-2,—1+

+V1.2>.

It means that in both cases the required minimum (being the glo-
bal minimum) is attained at C, =— 2.

Because of the relation between C; and «(C;) is one-to-one we
infer that for the estimator (9) corresponds a minimal risk in the class
of unbiased estimators with respect to the quadratic loss function
with weights of the form K(\2)=C\?)“1, where C € R, with values
C, and A mentioned in cases a) or b).
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4. Conclusion

We shall supplement the considerations received up to now with
the geometric interpretation of two notions used in the article: i.e. the
estimator which minimizes the risk by a given loss function and
unbiased estimator with respect to an assumed form of the loss function.

In the first case we can consider the risk R (e, A\?) as a function of
two variables &, A2, hence the geometric image of the risk by definite
sample size is like some surface cantained in the first eighth part of the
coordinate system o, A2, R(a, A?), which has the following property:
every cutting of that surface by the plane X2 =K, k>0 is a curve
attaining always a minimum for the value a = o defined by the formu-
la (8), which is connected with the estimator minimizing the risk with
respect to the quadratic loss function with any weight in the class of
“estimators of the form (5).

The geometric interpretation of the unbiasedness in the Lehmann’s
sense is as follows. If the estimator aY is unbiased with respect to a
given loss function, then we can consider the risk R(A%,A?)=
=E [L (@Y, A3|\], which is a function of two variables A3, A? with a
fixed size of n and results of sample. We consider now the surface in
the first eight part of the coordinate system A%,A%2, R(A\3,2\?),
characterizing itself in the way such that every cutting by the plane
A2=K, K> 0 is a curve which attains a minimum (perhaps different
for different k) lying always an the bisecting plane of the first eight
part of the coordinate system A%, A2, R(A%, A2); it means on the plane
A3 =22,
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