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SUMMARY

Several new criteria are proposed for the determination of suitable sample size
for assessing the statistical tolerance limits. The application of the criteria is illus-
trated on the solution of some problems from the theory of errors and theory
of reliability.

RESUMEN

En este trabajo se proponen algunos nuevos criterios que tratan de fijar el ta-
mafio de la muestra necesario para establecer los limites estadisticos de tolerancia.
Como aplicacion de estos criterios se resuelven algunos problemas de la teoria de
los errores y de la teoria de la confiabilidad.

1. Introduction

Fourty years ago Wilks’ treatise “Determination of sample sizes for
setting tolerance limits” (Wilks 1941) provided an impetus for the de-
velopment of the theory of statistical tolerance regions; since then one
of the basic problems has been the sample size necessary for the deter-
mination of the regions.
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The main problem in the case of Wilks’ distribution-free tolerance
regions is the determination of a sample size fulfilling a basic require-
ment, viz. that an appropriate probability statement holds for the tole-
rance regions. Wilks’ solution was complemented by approximative
formulas (Tukey and Scheffé 1944) and its application is facilitated by
numerous tables (e.g. Somerville 1958, Jilek and Likat 1960, Owen
1962, Harman 1967, Miller, Neumann and Storm 1973, Likes and
Laga 1978), graphs and graphical methods (Murphy 1948, Birnbaum
and Zuckerman 1949).

For families of probability distributions with a known distribution
form (e.g. when a random variable is known to be distributed normally
with one or two parameters unknown), the statistical tolerance regions
may be constructed usually even with very small samples; it should be
borme in mind, however, that with small samples the construc-
ted tolerance regions are too ‘‘large” and thus unsuitable for practical
for normal distribution with both parameters unknown (see, e.g., Owen
1962, Odeh 1978, Likes and Laga 1978).

The selection of a sample size for the determination of tolerance
regions in the case of a known distribution form (with some unknown
parameters) has so far been studied only sparsely (Albert and Johnson
1951, Faulkenberry and Weeks 1968, Faulkenberry and Daly 1970,
Guenther 1972, Passi and Williams 1978) and the results are not widely
known; statistical textbooks and handbooks usually make no mention
of these problems.

We propose several new criteria for the determination of sample
size with regard to the purpose to which the tolerance regions are to
serve. We shall limit our study to one-dimensional continuous distri-
butions; the tolerance regions will then be replaced by tolerance inter-
vals bounded by tolerance limits. If the tolerance interval is bounded
by tolerance limits from above as well as from below, we speak of two-
sided tolerance limits while if it is bounded from one side only we
speak of a lower or upper one-sided tolerance limit.

The extension of these considerations to multidimensional ran<om
variables is easy.

The use of the criteria is illustrated on two examples.
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2. Tolerance regions

Let © be a non-empty set (called parameter space), let F = {F(.; 9),
6 €O} be a family of probability distribution functions on R!, and
let (X;,...,Xp) be a random sample from any distribution F E€F,
where n is called a sample size.

Then a statistic T defined over R” and taking values in the o-
algebra of subsets of R! will be called a (statistical) tolerance region;
particularly, if T(x,, ..., x,) is a (finite or infinite) interval (or empty
set) for every (xy, ..., xp) ER", then T is called a tolerance interval,
and statistics L or/and U bounding the tolerance interval from below
or/and from above are called lower or/and upper tolerance limits, res-
pectively. The statistic Wy defined by

Wr (X1, ...s Xn)= dF(x; 0)
T(Xyq, :..r Xp)
will be called a (probability) covering of the tolerance region T.
LetBand vy be two real numbers 0<B,¥vy<1); (A)if

Pr{(Xy, ..., Xn): Wr(Xy, ..., Xn) 2 B0} = ey

and if it does not depend on 0, then T is called a - content tolerance
region at confidence level y; (B) if

E{WrX,, .., Xn)} =8 (2)

(where E denotes the expectation operator with respect to (X4, ..., X)),
and if it does not depend on 0, then we call the statistic T a 8- expecta-
tion tolerance region.

(For more detailed discussion of theoretical background of statis-
tical tolerance regions see, e.g., Fraser and Guttman (1956), or Guttman
(1970); a survey of many results of practical importance was given by
Guenther (1972).)



3. Sample size for determination of tolerance limits

As stated in Introduction, tolerance limits can be often determined
even from very small samples but in these cases they may be worthless
for practical use. We thus have to consider what to expect from toleran-
ce limits apart from their meeting the basic demands (1) or (2). These
additional requirements should be intuitively cleary justified (they
should concemn, e.g., the variability of tolerance limits or variability of
covering, length of tolerance interval, etc.).

The two solutions published so far are based on the variability of
probability covering of the tolerance interval:

1) Albert and Johnson (1951) proposed the following interesting
idea: §-expectation tolerance limits give no guarantee of how widely
~will the values of the probability coveri rg in individual cases differ from
the required value of 8. However, we may set a complementary require-
ment, viz. that for suitably selected numbers d;, d, and ¥ (0 <d, <,
0<d, <1 -8,0<vy<1)itshould hold that

Prif—d,<Wr<p+d}=v 3)

With simultaneous requirements (2) and (3) the original task is
modified and the tolerance interval sought is subject simultaneously
to requirements A and B (formula (3) is obviosly only a slight modifi-
cation of formula (1)). The simultaneous fulfilment of (2) and (3)
may be guaranteed only for sample sizes larger than a certain value.
Albert and Johnson (1951) showed this on the example of two-sided
tolerance limits of a normal distribution with both parameters unknown
and they presented a short table of minimal n for given g, v, d, and d,.

2) A similar notion may be used in the construction of - content
tolerance limits (Faulkenberry and Weeks 1968, Faulkenberry and
Daly 1970, Guenther 1972): Let us select four real numbers g8, 3;. 7.
7 such that 0 < B, By, v, 7v; <1, 8<PB; and let us further ask that (1)
and simultaneosly

Pr {(Wr=28,} <7, (4)
should hold.
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The meaning of this additional assumption is intuitively clear: (1)
expresses the basic requirement for - content tolerance limits at level
v whereas (4) ensures that the tolerance intervals should not be
excessively “large”. In this case we can also look for the least n for
which both requirements will be fulfilled. A short table for both one -
sided and two -sided tolerance limits for normal distribution with both
parameters unknown is given by Faulkenberry and Daly (1970).

4. Some new criteria

The above criteria proposed by Albert and Johnson (1951) and
others have a sound theoretical basis, are elegant and lead mostly to
tasks that are readily solved (cf. Guenther 1972). However, in some
cases they do not correspond exactly to the intuitive requirements of
the users; e.g. when using statistical tolerance limits for solving some
problems associated with precision of measurement methods or instru-
ments (Jilek 1980, 1981), we shall want to know how wide the
variability of the tolerance limit may be, etc.

For this reason we propose here some new criteria based on the
variability of tolerance limits and length of tolerance intervals.

We shall use the following notation:

TL e tolerance limit

TI .............. tolerance interval

L(TD) ........... length of the tolerance interval (i.e. its Lebesgue mea-
sure).

asTL, asTI..... asymptotic tolerance limit, asymptotic tolerance interval.

1) One of the possible requirements of tolerance intervals is a li-
mited variability of the tolerance interval length (in the case of two-
sided tolerance limits) or limited variability of tolerance limits (in the
case of one-and two-sided tolerance limits): Let § >0, and let us
require that, in addition to (1) or (2), it should hold that:

{Var (£(TD))}*
E(L(TD))

<é (5)
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or

{Var(TL)}"

£ (TD) <9 (6)

respectively.

2) In other cases we can require that the tolerance interval length
variability or tolerance limit variability should be small as compared with
the variability of the observed random variable: Let 6 > 0, and let us
require that

{Var (L(TD)/Var(X)}~ < 8 (7)
or
{Var(TL)/Var(X)}* <6 (8)

respectively.

3) Tolerance limits tend in probability to appropriate quantiles
of the probability distribution of a random variable X when » tends
to infinity. We may thus require that the tolerance limits should be in
a sense close enough to these asymptotic values, or that the length of
the tolerance intervals should not differ too much from the length of
the asymptotic tolerance interval, e.g. that for given 8 > 0 it should
hold that

L
or
E ’l TLaSTisTL ”\ (10)

or that for given 8 > 0 and given € (0 < e < 1) it should hold that

69



Pr H ’K(T})(;,flgasm < af >e (11)
or
pri| =Tl <) 5 (12)

Note 1. The proposed criteria (9) - (12) may be replaced by their
one -sided variants if we do not consider the absolute value of the
ratios (L(TI) — £ (asTI))/L (TI) and (TL — asTL)/asTL; cf. Example 2.

Note 2. It may happen that for some distribution family some
of the criteria will not be useful: thus criteria (5) and (6) are not suita-
ble for normal distributions with one or both parameters unknown
(except the case u = 0) since they are dependent on these parameters.
These criteria are applicable, however, for gamma distributions.

5. Examples
Example 1. Measurement precision

The theory of measurement usually assumes that the results of the
measurement X’s are independent and are normally distributed with

mean value p and variance 62 (one or both parameters are unknown).
Thus the absolute errors A’s,

A=X—pu,

are normally distributed with zero mean and variance o2.

For assessing the measurement precision, the upper two-sided
B-content tolerance limit at confidence level y for absolute error A
has been proposed (Jilek 1980, 1981). This tolerance limit is equal to
ks, where

]
n—1
- — + L L S
k=u (1 +B)/2) 3 RN 7){
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n
= . —¥)2
s n—l,-E,(x' X)

I M=

X n i

i=1

and n, the size of the random sample which served as a basis for the
calculation of the tolerance limit, is greater than 1;u(p) (where 0 <p <
< 1) denotes the p - quantile of the distribution N(0, 1), and X}(p) is
the p-quantile of the X2-distribution with f degree of freedom.

Determination, or more precisely estimate, of the measure of
measurement precision is very important and should thus be performed
with the highest possible precision. The tolerance limits of absolute
errors are random variables, have their own variability, and we can
thus naturally require that this variability should not be too great. A
sound demand of the precision measure is that it should not differ too
much from the asymptotic value which is in this case u((1 + g)/2) 0.
A suitable criterion to be used is thus (10) or (12).

The assumption of normal distribution of absolute errors implies
that (1) and (10) hold simultaneously only for those n (Jilek and.
Burianova 1982) for which the following inequality holds

Ya

n—1 2
Rn-y 3"“—‘—"—)(:_‘ a—n) -G Xy 1 —I<8+27-1 13)

where

Ry=QIN%T [(f + D/2]/T (f/2)

and Gy denotes the distribution function of the X?-distribution with f
degrees of freedom. This criterion is obviosly independent on 8. For
conventionally used values of y=0.90, 0.95 and 0.99 and for 6§ =0.10
and 0.20, the minimum # fulfilling (13) are shown in Tab. 1.

If (1) is to hold simultaneously with (12), we may easily see (Jilek
and Burianova 1982) that the following condition has to be fulfilled:
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Gt (1 +8Y X0y (1= 7)) = Gy (1= 8P X2, (1 — 7)) > €. (14)

(This inequality is also independent on f). This can be achieved in
many ways; a sound approach seems to be to select a number €, such
that 0<ey <1 —€ and to require that the following inequalities

should hold simultaneously

Gn-y (1 +8) X7, (1 —M)>€+eo,

Gy (1= 87 8., (1 - y)) <o :

this yields an inequality

DG (e+e0)— X2, (€o)]/X3_, (1 —m)<46.

Minimal »n satisfying this inequality are given in Tab. 2 for’y and &
the same as in Tab. 1, for €= 0.90 and 0.95, and for €, = (1 — €)/2.

TABLE 1
Minimum 7 fulfilling (13)
b 0.10 0.20
0% 0.90 0.95 0.99 0.90 0.95 0.99
n 113 170 322 34 51 .95
TABLE 2
Minimum 7 fulfilling (15)
) 0.10 0.20
€ U 0.90 0.95 0.99 0.90 0.95 0.99
0.90 181 194 218 58 65 78
0.95 244 261 289 77 84 100
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Example 2. Reliability

Studies concerned with the reliability of products or technological
devices pose often the question of the lenght of time for which the
product or device will serve satisfactorily their purpose. When working
with laboratory animals, we are interested in their life- span and very
often we have to know how long they survive under certain conditions.
The life - span or durability of an individual item is determined by the
action of a large complex of various factors, for the most part uncon-.
trollable, and has therefore a stochastic character; its mathematical des-
cription is often done with the aid of gamma distribution (Mann,
Schafer and Singpurwalla 1974, Gross and Clark 1975, etc.) with the
probability density

[0 T (r/2)1"! x2~1 exp (—x/6), x>0,
fix)= (16)

0 otherwise,

where 6 > 0, r > 0 (r is usually taken to be known).

When enquiring about the lower life - span limit, we usually select
a suitable real g (0 <pB<1) and search for a value above which the
life-span of the majority of items (at least 100 8 %) will lie.

If we know 0, the answer to our query is the (1 — f§)-quantile of
distribution (16), 8 X2 (1 — )/2.

However, in most cases 8 is unknown and it is then sensible to try
to determine, on the basis 'of experimental data, such a limit above
which the life -span of most (at least 100 8 %) of items will lie with a
high confidence (with probability ). The solution is the lower one -
sided B-content tolerance limit at confidence level v, which is equal
to kx, where (Guenther 1971).

k=nX2(1 —B) /X2 (Y) (17)

(for optimality of this tolerance limit cf. Guenther 1971).

This formula indicates a strong dependence of the tolerance limit
on the sample size n, especially for small . This is confirmed, e.g.,
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also by consulting the table of tolerance factors k for exponential dis-
tribution, i.e. in the case of » =2 (Epstein 1960).

We naturaly want the tolerance limit to be as high as possible, i.e.
we want a garantee (with given probability guarantees f§ and ) that
the life - span will be sufficiently long.

If we use the requirement of a simultaneous validity of (1) and
(4), then we see (Guenther 1972, formula (4.4)) that this requirement
is fulfilled for those n for which the following inequality holds

XX —y)<X,(r) X1 —B). (18)

(If we chose, in the case of an exponential distribution, i.e. for
r=2, the following values: f=+vy=0.95, $, =0.975 and 7y, =0.10,
then we could see easily from the tables of quantiles of the X?-distribu-
tion that inequality (18) is fulfilled forn = 18.)

Relatively small samples thus suffice for the simultaneous satisfac-
tion of requirements (1) and (4) at the above probability guarantees.
However, a question arises if the criterion satisfies in this case the needs
of users of tolerance limits. The users usually wish that the tolerance
limits should be fairly close to the asymptotic values, ie. to the
corresponding quantile of the original distribution. However, the mean
value of tolerance limits for small samples may in fact be appreciably
remote from the asymptotic value —the difference is 100 (1 — r n/
X2, (7)) % of the asymptotic value, in our case 37.65%. Individual
tolerance limits can obviously be still much smaller.

A much more natural approach seems to be to set a suitable
number & (0 <6 < 1) and to require that the tolerance limit kx should
not differ from the asymptotic value by more than 1006 % of this
value, either in its mean value,

E I asTL — TL

asTL §<6, (19)

or with a probability equal to €,
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asTL — TL
Pr —_aST_L—_g 6t =e€ (20)

(these are obviously one-sided variants of criteria (10) and (12) from
the preceding paragraph).

As we can easily see, the ratio

asTL — TL —
=1 -2nX/10%,()

i.e. criteria (19) and (20) do not depend on f.
On using criterion (19) we obtain that
E{1-2nX[[6X,M}=1-rn/X,();
hence, for given 6 we look for the least natural » such that
rn/X,m)=1-26. @D

For 6 =0.10 and 0.20, for cpnventionally used confidence levels
v=0.90, 0.95 and 0.95, and for r=2(2)10 we find values of the least
n satisfying (21) in Tab. 3.

For criterion (20) we obtain

Pril—2nX[[0 X5 (MI<8}=1—Grm((1 -8)X}, (7).

TABLE 3
Minimum # fulfilling (21)
8 0.10 0.20
ST 090 0.95 0.99 0.90 0.95 0.99
2 137 230 465 28 48 98
4 69 115 233 14 24 49
6 46 77 155 10 16 33
8 35 58 117 7 12 25
10 28 46 93 6 10 20
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Since we require that the last expression should at least equal €,
we obtain finally that criterion (20) is satisfied by » fulfilling the
inequality

X2, (1—e€) /X, (r)=>1-5. (22)

For 7, 6 and r as in Tab. 3 and for e =0.90 and 0.95 we find values
of least n satisfying (22) in Tab. 4.

Note. The solution of inequalities (21) and (22) is aided by using
some tables of quantiles of X*-distribution (e.g. Harter 1964, Likes

and Laga 1978) or good approximations of these quantiles. Tables 3
and 4 were set up using the Cornish - Fisher approximation (Goldberg
and Levine 1945, Zar 1978) and Kelley’s tables of quantiles of normal
distribution (Kelley 1948). When using (21) we can also use existing
tables of the X?(y)/f ratios (Janko 1958) or (/X3 (v))* (Weissberg
and Beatty 1960).

TABLE 4
Minimum » fulfilling (22)
5 0.10 0.20

N 090 095 099 090 095 099
€=0.90

2 593 769 162 133 171 257

4 297 385 581 67 86 129

6 198 257 388 45 57 86

8 149 193 291 34 43 65

10 119 154 233 27 35 52
€=0.95

2 776 926 1413 174 218 314

4 388 463 707 87 109 159

6 259 326 an 58 73 105

8 194 232 354 44 55 79

10 156 196 283 35 24 63
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