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1. Introduction and Relevant Statistics

Suppose F,(x) and G, (x) are the empirical distribution functions
of two independent samples (x,, X;, ..., X,) and (¥, V,, --., ¥n) drawn
respectively from populations with continuous distribution functions
F(x) and G(x). Employing complicated methods Smirnov derived in
1939 the probability distribution of the statistic

Dy = S)L‘tp [Fn(x) — Gy (x)]

under the null hypothesis F(x) = G(x). Gnedenko and Korolyuk found
the probability distribution of D,’;,, by using the random walk model
or the geometric theory of paths. In 1960 Reimann and Vincze [2]
considered the case of two unequal samples and derived the distribution
of the statistic

Dy, = Sup [m Fp(x) — n G, (x))

under the same null hypothesis. For equal sample sizes, Sujan [3]
obtained in 1971 the joint distribution of Dy , and R, ,, the total
number of runs of x’s and y’s. Here we obtain in generalization of
her results the joint probability distribution of the rank order statistics

Dy, ,and R, , by using combinatorial methods.
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Given two samples (X, X,, ..., Xpp ) and (¥y, V2, ..., ¥'n) Of sizes m
and n (< m) with observations in ascending order of magnitude we pool
them and associate a random variable 6; with the ith observation such
that

i

_ {+ 1, if the ith observation is an x

— 1, if the ith observation is a y

Define So =0and S; =60, + 0, + - + 6.

If the points (i, S;) are joined one with the next by straight
segments, we obtain a graphical representation of the sequence {S;}.
Denoting by R,, , the total number of runs of (+ 1)s and (- 1)’s,
our object is to determine

P{Dy, w<t,Rpn=p}; t=Z2m-n, 2<p<2n+1 ()

Now D, ,<¢t, ifmax S§;<rt.

’ 1<igKm+n

Hence (1) is the same as

P mix Si<t, Rpn=ph t2m-—-n, 2<p<2n+1()
1<i<m+n

2. Joint Distribution of Dy, , and R,, ,

Theorem 1. FortZ2m—-n=0, 1 <r<n

m+n m—1\[n-1
P{D, ,<t,R,,=2r1=2 —
m ’ ’ r—1 r—-1/J -
m—t—1\[(n+r-—-1 m—t—1\(n+tr-1
- — (3a)
r—1 r—1 r r-—-12

andfort=2m-n=0, 1<r<n-1,
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m-+n m—1\[n—-1
P{Dy ,<t, Ryn=2r+1}= +
m ’ r r—1
m—1\[n—-1 m—t—-1\[n+t—1
+ -2 (3b)
r—1 r r r—1
Proof. PART I. First let Ry, , =27

The total number of runs in a path being 2 7, there are r runs* each
of (+1)s and (— 1)’s and the number of admissible paths is

m—1\[{n-1
2 4)
r—1/\r—1
the factor 2 accounting for the two possibilities that the first run is

one of (+ 1)s or of (— 1)s. From this we have to subtract the number
of paths which violate the condition max S; < t. Now two cases arise:

Case 1. The path with max S; > ¢ starts with a positive run and
ends with a negative one.

0
; N ‘ (m+n, 2t-m+n)
P \/\ P’
R 0 R’
(m+n, m-n)
0 m+n 0 m+n
Fig la Fig 1b

* We shall find it convenient to call a run of (+ 1)’s a positive run and a run of
(~ 1)s a negative run, and to abreviate the phrase ‘Number of positive (nega-
tive) runs in a path OP’by pp (OP) and pp (OP).
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For a path OQ belonging to this category, let P be the first crossing
point with the line y =t¢. Applying the operation* a on OP and ¢ on
PQ, we get the path O’Q’ (Fig. 1b). Symbolically,

0°Q’=a(OP) + p(PQ)

Now the characteristic of the segment PQ is that it starts with a
step + 1 and ends with a — 1. Hence the ¢ —operation applied on PQ
yields the segment P’Q’, again starting with a + 1 and ending with a
— 1. Also pp (PQ)=p,(PQ) and the positive runs in PQ correspond
to negative runs in P’Q’ and viceversa; hence runs of the two kinds are
equal in number in P’Q’ as well, with the first run in P’Q’ (correspon-
ding to the last one in PQ) becoming a positive run. Also the last runs
RP in OP and R’P’ in O’P’ are positive runs as each one leads to the line
y =t from below. Thus both in PQ and P’Q’ the first run is in continua-
tion of a positive run and

Pp (O,Q’)zpp 0Q)=pn(0°Q")=pn(0Q)

Q is the point (m + n, m — n) and the - operation on PQ (viz.
reflection in PN :y =1¢) trapsfers Qto Q m+n2t—m+n) A
further + - operation on it leaves the end points undisplaced. Hence
the B * v =yp- operation on PQ while retaining P’ as an end point
brings the other end point to the position Q’(m + n, 2 t — m + n),so
that there result (n + t) positive and (m - t) negative steps in O’Q’.
Thus each one of the paths violating the condition max S; < t corres-
ponds to one having (n + ¢) positive and (m — t) negative steps as also
r positive and r negative runs. Hence** the total number of paths of

this type is
n+t—1\[m-r-1
4)
r—1 r—1

* The operations a, f, 7y have been defined by Kanwar Sen [1]. The ¢ - operation
(equivalent to B * ) is a new one, transforming the path (8,, 6,, ..., 0,) into
the path (—en, —en_ 15 vees —0,)

** The 1-1 correspondence between the sets of paths here and et seq can be easily
demonstrated. :
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Case 2. The path with max S; >t starts with a negative run and
ends with a positive one.

o

m+n+1,
2t-m+n+1)

P (m+n, m-n) Py

R R’

m+n m+n+1

 Fig 2a Fig 2b

For such a path OQ (Fig. 2a), let P be the first crossing point with
the line y = ¢£. Since the last run in PQ is a positive one, the p - operation
transforms it into a segment beginning with a negative run at P; conse-
quently P loses its identity as the first crossing point and a 1-1 corres-
pondence cannot be set up. However, if we adjoin a unit positive seg-
ment P, P’ at P, (Fig. 2b) and join ¢(PQ) at P’, the identity of P, as
the point of first crossing is maintained and the unit segment P, P’ is
followed by a negative run corresponding to the last positive run in
0Q. The segment OR, R being the initial point of the run passing
through P, starts as well as ends with a negative run. Hence

Pn(OR)=p,(OR) + 1 =5, say
Now
Pp(0Q)=pn(0Q) =r
hence
Pp(RQ)=r—s+1=py(RQ)+ 1

Further O’R’ is the same as OR, R’P’ consists of one positive run
and for P’Q’° = p(PQ).
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Pp P'Q)=pn(RQ)and p, (P'Q")=pp(RQ)
hence
0p(0°Q)=r=p,(0'Q") — 1

The number of runs is exhibited in the first three columns of the
table below:

Table 1
Rmn=2r Rmn=2r+1
Segment Positive Negative Positive Negative
runs runs runs runs
00 r r r+1 r
OR=0R’ s 1 s s *
RO r—s+1 r—s r—s+1 r-—-s
RP 1 0 1 0
PQ’ = p(PQ) res | res+l res rostl
00’ r r+1 r+1 r+1

This case differs from Case 1 in the addition of a unit positive seg-
ment P, P’. Hence the terminal pointis Q’'(m+n+ 1,2+ m+n+1)
and O’Q’ comprises n + t + 1 positive and m — t negative steps and

pp(0°Q)=r=p,(0°Q’) — 1
consequently the total number of such paths is
n+et\fm-1t-1
(6)
r—1 r
But a path like O’Q’ has the segment PP’ only of unit length;

hence from (6) we have to subtract the number of paths which lead
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from P, to Q" beginning with two or more positive steps. On taking
away the first unit segment P, P’ from such a path, we are left with a
similar path beginning with a positive run of one or more steps and their
number. obtained from (6) on replacingn by n — 1, is

n+t-1\[m-rt-1
)
r—-1 r

Thus the required number of paths violating the condition max
S; < t, starting with a negative run and ending with a positive run, is

n+t n+it—1 m—t- 1\ [(a+it-1\[m-t-1 )

r-1 r—-1 r r—2 r

Combining the results (2), (4), (5) and (8) and noting that with
m positive and n negative steps the total number of possible paths is

m
for the case m =n.

m+n
( ) we prove (3a), generalizing the result obtained by Sujan [3]

PARTIL Let Ry , =27+ 1

Now each path has r + 1 runs of one type and r runs of the other,
hence the number of such paths is

m— 1) [n-1 m-—1}[n—-1
+ (€))
r r—1 r—1 r
From this we have to subtract the number of paths which violate
the condition max S; < £. Now two cases arise:

Cuse 3. A path with max S; > ¢ has r + 1 positive and 7 negative
runs.

The numbers of positive and negative runs in the various segments
after the interposition of a unit positive segment PP’ (fig. 3a) are
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P (m+n+1,
20-m+n+1)

, /N, o
P (m+n,
m-n)

0 m+n 0 m+n+1

R R’
Fig 3a Fig. 3b

exhibited in the last two columns of Table 1. The terminal point is
Qm+n+1,2¢t-m+n+1)and O°Q’ consists of n + ¢ + 1 positive
and m — t negative steps; also p, (0’Q") =p, (0’Q") =r + 1. Consequen-
tly as in Case 2 the number of possible paths now is

()
L)

Case 4. A path with max S; >t has r positive and r + 1 negative
runs which is one more than in Case 1.

o

t ¢ 5 (m+n,2t-m+n)
YA N
R Q R’
0 (m+n, m-n) , ,/
m+n 0 " ,F m+n
, vV .
Fig 4a Fig 4b

Proceeding as in Case 1. cach path violating the condition max
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S; <t is seen to contain n + t positive and m — ¢ negative steps, as
also r positive and r + | negative runs. Hence their number is

n+t—1\ (m—-t—1
(1)
r—1 r
Combining the results (9), (10) and (11), we prove (3b), generali-
zing Sujan’s another result.
3. Limiting Distribution

Theorem 2. If g u, y be some fixed finite constants, m =N +
+gVvVN +0(l)andn=N —gv/N +0(1), then*

A}im PD}, w<(@&- Y)VN, Ry <N+ uvV/N} =

1
T

(1— eg’—y’)f" e~ gx (11a)

Proof. If a, g h, k w, x -denote finite constants, N denotes a large
number and 0 < x < 1, then using Stirling’s asymptotic formula:

* To show that g2 <<y2, we sec that tle terminal point of the path is (m + n,
m - n). Hence

max. ordinate of the path =Dy, , >m - n >0

by hypothesis of Th. 1. Thus the condition D;n, ns(g- y)Nll2 is meaningful
forg ¥ 0. Also from (114) and (1),

(g-y)N"=thastobe»m-n=2gN"* +0(1),
by hypothesis of Th. 2,
ie. g-v=2g o g+y<0

Alsog v 220, as shown above; hence the result.
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n! =21 n"% e " [1+0 (1/n)]
it is found that for large N,
@N+wN* +g)l N2 7 (@NyN+wN +g+%] =

=exp[-@N+wN* +g)+

+@N+wN*+g+ %)‘ log{l + WN*+g)/(aN)}] [1 + 0 (N~")]

B B X 1| (wN"+g 4 N 1
—exp|: aN+(wN +g+ 2)(—aN )+(aN+wN +g+ 3 X

WIN2*+2 wgN* w3 N3x 1 1
x{— 22 N? NEV I ERA Vi R VT R

ool

=exp [~aN + W2 a) N2*1 +0 (N* 1) + 0 (N3*72) + 0 (N %)

=exp [-aN + (w2/2 a)N2x-l] [1+0(1)+ O(Nzx—l)]

whence

X
1 VTN

—N+wN* +h

<N+g\/ﬁ+k ) 2N+g\/;+k+‘/z
2

X exp {——;—gz —2w2 N2x-! +2ngx'l/2}X

X {1+0(1)+0N?*"1}

When x > 1/2, this as N = oo diminishes like exp(—2 w2 N2*71)
When x < 1/2, the exponent [ ] is 0 (1) and the number 0 (N*) of
combinatorial expressions which are of the same order of magnitude
is largest when x = 1/2. Hence we take x = 1/2.

Forlarge N and finite q, f, &k, (a > 0)

@N +fVN + K [[V27 @NPV VN vk ) =
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=exp [—(aN+f\/]V+k)+ aN+f\/]V+k+—l:|X

{f¢ﬁ+k PAN+2fkVN 13 1
*IaN 7 287 3a3N3/2+0(_)}

=exp [—aN+2L:+ a\f/ﬁ (k+_;_~£_2a)+0(%)]

We thus have for ready reference the following asymptotic
behaviour:

For large N and finite g, A, k, w

( N+gVN+k

2N+g\/7v—+k,/2 Nl=
'é—N-I-W\/]_V_'i'h)/ frN]

=exp[%g2 —w?— (g —w)? +—1—-{gk +%g-%g3 -

VN

—2wh—w+—§—w3—2(g—w)(k—h+%)+—§—(g—w)3}+

+0(—]%,—):|=exp—%[(g—2w)2 ~N%{2@-2w)Qh—k) -
—g+gE—2w)J {1 +0(/N)}

We now investigate the asymptotic behaviour of
m-—1\[n—1 m—t—1\[(n+t—1
P,=12 — —
r—1 r—1 r—1 r—1
m—t -1\ (n+t-1 ;m+n
B r r—2 m
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when, withm —1=N+gV/N,n—1=N-gV/N, t=(g - 1)V.Vand
r=0(N), g, y being finite, N tends to oo.

We observe that for large N, combinatorial expressions above are
dominant when r is about half of m orn orm - t orn + t. We, there-

fore, take r — 1=%N+W\/N. Then

N+gVN N-gVN
)

';_N'FW\/N ;—N-I'W\/]—V_ -

N+yV/N N—yJN)
(%N-FW\/_]\?)(%N'FW\/N R

N+yvV/N N-yvV/N . S N+2 ;
——;-N+W\/N+l %‘N+W\/N—l A\N+gVN+1 (1)

In magnitude the 2nd product in (l2)=2N+y\/ﬁ V2N X
1 1
X exp [——2— Oy —-2w)3+ Wi y{(y—2w)?— 1}]X [a similar ex-

pression with y replaces by — y] [1 + 0 (1/N)]

=Ty ew [ aw =20 o amy

22N+1
T TN

e-V2-aw? [1 _ 4y*w

VN +0(1/N):] (13)

In magnitude the 3rd product in (12) after some simplification

= [Expression (12)] X exp

4y

VN
2N+1 4y (1 — )

= 21rN e—y2_4w2 [l + ) (\/-]_V—W)) +O(1/N)J




The Ist product in (12)= 2 [Expression (13) with y replaced by g].
The divisor in (12)=22¥*2/T/r N ¢™8 + 0 (N"3/?)

HenceP1=——]-—0'4W2 [2 1- ‘e’ w -8 X
2V2wN VN '

4y(l—2wy)} }
X{2+ +0(1/N
{ \/N O(l/ )

="_1—€_4w2 [ - egz‘)’z _._2_ {2g2 w+

vaN VN
+eB 7 (y 292w + 0 (1/N)]

Again,

lN+w¢N+]-%N+WVN

ozl
)

-%N+WVN —LN+w¢N+1

2

N+yVN N-»VN IN+2
2(—;‘N+W\/N+l) (‘%‘N'FW\/N):I (N+g\/ﬁ+1)

e_4w2 [(32 (g—zw)/\/lv + ¢72 g+2w)/VN _

T oVaAN
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1 paw? [l B

_ 2eg2—y2+2(y—2W)/\/17]=___
va N

2

VN

Puttingw=(r— 1) N~ % —%\/ﬁ, the highest order terms 0 (N ~ ")

give, for g, u, y some fixed finite constants,

Py =P {D}, ,<(&~Y)VN, Rpn <N +uv/N}

R2w+e P (y—2w)} +0(1/N)]

WN+%u VN
=2 N+Eu 1 (1 —e8 =) emaw?

r=1 vaN

Since an increment of unity in r corresponds to an increment

INVN =dwinw,

lim =—2—(1—6“"2"’2)_{1“e"“"2 aw
N »e N \/; —o0

’ u
=#(1 —eé'"J")f e dx (14)

The contribution from terms 0 (1/N) is

2 %N+%u\/17 2 2 2
z et ROw—y+wer T _2w @+ 1}~

N\/1T[>

r=1

) |
2N f e [(2x -2y +x)ef” 7 —x (1 +g%))dx
7r - 00 .

~

Since the integral is convergent, this tends to zero as N —> oo

Similarly for terms of order smaller than O (1/N). In fact, the integrand

x? multiplied by a polynomial in x, and the intcgral

would always be e~
would, therefore, be convergent; and this multiplied by a negative
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power of N would tend to zero. (14) shows that R, , is asymptotically
a normal variate not depending upon g, i.e. upon m — n; also D,';,, n and
R,, n are asymptotically mutually independent.
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