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SUMMARY

Outstanding elements and record values are discussed in this paper as related
to exponential and gamma populations. First, the problem of prediction is consi-
dered when there are available, k sets of independent observations from a general -
type exponential distribution. in such a case, prediction of the ng -th record
value in the k-th set is made in terms of n;-th (i=1, ..., k — 1) record values from
other (k- 1) sets. For this purpose a predictive distribution is obtained.
Secondly, the distribution of the sum of record values as well as that of a linear
combination of record values are obtained for the exponential case. Probability
integrals of the sum of record values and the probability integral of the sum of
outstanding, clements are suggested for all values. Then, the distribution of the
n-th record values in a gamma population is put in a closed form. Further, the
distribution of the linear combination of the spacings of outstanding elements as
well as that of the linear combination of outstanding elements themselves are
obtained. Finally the distribution of a ratio of two record values is obtained.

Key words: Record values; Outstanding elements; Prediction; linear com-
binations; Bayesian inference.

1. Introduction
Discussion on record values and the outstanding elements has re-

ceived much attention recently. Chandler [3] discusses the distribution
of the lower records as well as the distribution of the difference of the
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orders of record values. Foster and Stuart |7] consider distribution free
tests for the randomness of a series of observations based on the linear
function of upper and lower records. Tata |20] gives the limit theorems
and also a characterization of the exponential distribution in terms of
record values. Nagaraja [19] gives the condition for the existence of the
expected value of the n-th record value and also gives the bound for
the expected value. Nagaraja [18] gives further characterization of
uniqueness of F(x) based on the conditional expectation of the
record values.

Nagabhusanam et al |[17] discuss the outstanding values as the
upper record values of the sequence {log [1 — F(x)] - log [1 — F(x;)]} ,
1 <i< o and also give the position of the mean of the r outstanding
values. Another aspect dealt with in this paper is the problem of pre-
diction, which is analysed by many authors as can be seen in the refe-
rences. For example Lawless [11], Lingappaiah {14, 15, 16], Faulken-
berry [5], Kaminsky [9], Fertig and Mann [6], Hahn [8], all treat this
problem of prediction from the classical point of view using the distri-
bution of the order statistics, while Dunsmore [4], Ling [13], Bancroft
and Dunsmore [2] and Aitcheson and Dunsmore [1] deal with the same
problem from the Bayesian point of view. What is being done in this
paper, firstly is to obtain a predictive distribution using Bayesian ap-
proach and from this predictive distribution, the ny-th record value in
the k-th set is predicted in terms of the record values in other (k - 1)
sets and the procedure to get a prediction interval is suggested along
with the variance of the ng-th record value. Next, the distribution of
the sum of n record values is obtained for the exponential case. When
the underlying distribution is gamma, the distribution of the n-th
record value is put in the closed form. Also, for the exponential case,
distribution of the ratio of two record values is given. Next, the linear
combination of record values, linear combination of outstanding values
and also a linear combination of the spacings of the outstanding values
are considered and the distributions of all these linear combinations are
obtained. Probability integral for the sum of record values as well as
that of the sum of outstanding values are suggested for all values. Also,
the probability function of the ratio of two record values is also
given.
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2. Preliminaries

Xy, 15 the n-th record value of a sequence of independent and
identically distributed random variables if

up = min il >up x> xy, |} (1)
withug =1 and ¢; is an outstanding clement where
ti=log {[1 FXOIT - F(xui)]} (2)
that is, #; is the j-th upper record value of the sequence
log {[1  FX))Il - Fxplh 1<i<e (3)

Suppose we have a distribution such that its distribution function
F(x) is of the form [gencral-exponential type]

Fix)=1 exp|—{h6, x)}] (4)

where A6, x) is differentiable both w.r.t. 8 and x and further
x>0.0>0. Then torm (2) and (3), we have

t,=h(0,xul.) e, x) (4a)
In the case of the exponential distribution,
fix)=0 exp(—06x), x>0,0>0 (4b)
equation (2) reduces to,
=00 - x) (5)

where y; = Xy and x =x,; with u; as given above in (1). From Nuagaraja
[19], we have, forn =1,

ply,>xly,, =vi=[1 F)l FO), x>y
(0)
=1, X<y
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and trom this it follows that,

n .
I F,, ) =1{1 Fo)p 2 {—log[l - Fux)|j'/i! (7)

1=0

From (4) and (7), we get
n .
I - Fyu,(x)=[exp (—h(0,x)}] £ {h(O, x)}/i! (Ta)
=0

differentiating (7a), we get
Jugx) =10, = {exp [ A0, x)|} h(B, )" hy(6, x)/n!  (8)

where A, is the derivative of h(x, 6) w.r.t. to x.

For the exponential case, (8) is

f,) =100 y,)" exp|—(0 y,)i/n! (9)

Now, Nagabhushanam et al [17], consider the joint distribution of
the upper record values given by (3) and also the upper record values
of the sequence {log F(x) — log F(x;)}. I <i <o, and the first obser-
vation x. From this joint distribution, the distribution of s is obtai-
ned as,

fity, ta b =e™, 0<t, <1, <. <ty <oo (10)

and further x and ¢’s are independent.

Using (2), we get

eTli=11 Foplll - Foo) (10a)

and hence

§-1 f(}")dl”_] ff( v X)) dy, dx
=l 1y ] ‘ . Fi R Yy 3y
e”'s flx)dey Lodgdx) = |l_£ll l F(-Vi’l l_ T o) (10b)
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From (10) and (10b), we get

§-1 .
) ] (10c)

fUy, e y)=I—log {1 - Fy)H [l_Il T_—F@f(y,)

0<y; <y; <<y, <oo
For the exponential case, (10c) reduces to
fO1, ny) =0y e, 0<y, <y, <- <y, <oo (11)

and (9) can also be obtained from (11) by integrating out y,, ... y;_,,
when (10c) gives

i) =[=log {1 — F)}Y fy)Is! (11a)

where f;(y) denotes the p df of y,.

3. Predictive distribution

Let there be k sets of independent observations from the general-
type exponential distribution given by (4). Let z; = Ynpr i=1, ..k be
the n;-th record value for the set i. Then the distribution of the n,-th
record value is given by (8) as

flz,160)=exp[—h(0,z,)]| [hO, z)]" KO, z,)/n,! (13)

Taking the prior for 6 as g(6)=e"%, 8 > 0, we have f(61z,). Now
take the second set of observations and consider the distribution of
the n,-th record value z,, that is f(z,10) which is similar to (13). Now
taking f(01z,) as the prior for the second stage (second set) and along
with f(z,10), we get the predictive distribution at stage 2 as f(z,lz,).
Continuing on this line and taking the posteriori at stage (k — 1), that
is flOlz,, ..., zx _y) as the prior for stage k along with the distribution
of the ng-th record value zg, which is f(z|6), similar to (13), we get
the predictive distribution for zy at f(zglzy, ..., 2k -4 ).
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For example, for the exponential distribution given by (4b), we
have, the distribution of zy as

f(zl|0)=e—02, z':l enul/nl/ “4)
Now with the above prior g(#), we get from (14),
fOlz)=e 0020 gM*t (1 42 Y12 /P, +2) (15)

Further, integrating out 8 from f(z,160) f(61z,), we get the predic-
tive distribution at stage 2 as

flzalz) = +S)"* 2 22 /(1 +8)V " *B(ny +1,n, +2)  (16)

where Nj=n; + +n;, S;=z, + " +z;,i=1,2, ...,k

Similarly, from f(0lz,, ..., zx_,) and the distribution of zg, ng-th
record value, that is f(z410), similar to (14), we get the predictive dis-
tribution of zy as

+k
N,
(1 +Sk_y) ¥t zF

Bng + 1, Np_, +k) (1 +S)Nerke

ﬂZklzl,...,Zk_1)= (17)

From (17), we can get the prediction interval for zy as P(zxy <a) =
=1 — g for set f, Procedure to operate (17) is as follows. Consider k
independent set of observations from (4b) and take n;-th record value
i=1,2,...,k—1 from first (k — 1) sets and put them in (17) which
turns out to be a function of zg (that is ng-th record value) only and
then obtain the prediction interval P(zy <a)=1 - f by integrating.
If ny =" =ng =n, (that is taking n-th record value for each of k sets),
we get (17) as

z: (] +Sk_')n(k—l)+k

Bln+ 1, n(k— 1)+ k] (1 +S)rk+k+1

fzk|zy, . 2k ) = (18)

From (17), we get the r-th moment about origin u;) for zy as
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wa = +S50 ) B +r+ LNe +k 1B (g + LN+ k) (19)
from which we have the variance of zg as

ol =S D+ Dt + N+ KN +k - DEWNg+ k- 2) 020
wWallw;=n, i=1, 2, ..., k, then (20) reduces to

0Ly =4S D2+ ntk+ 1) +k)/lk(n+ 1) - 12[k(n+1) - 2{(20a)

4. Distribution of the Sum

Now the characteristic function of y; + - +y. =y using (11), is,

soni-)0-2).

and inverting (21) we get the distribution of y as

§-1 §

. _ ( 1) ! k s-1 l(x—1 -0 y/k
=5 2,00 D (k-x)s—~k e Ok 4

+{S s - 1)1y eT0Vs

! ss—z —l k -0 y/s
k§| [(s - l)!_l(s - k)()e ’

0<y<oo

—

»)

~
~

Probability integral of v can be evaluated for any value of £k and s.
In (22). the first sum corresponds to the residues at the poles r =—i0/k,
k=1.2. s | while the second term and the last sum correspond
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to the residue at the multiple pole at t =—i 6/s. From Nagabhushanam
et al. [17], we have the distribution ot z=1¢, + - + £ as

s
f(z)=k2 (= 1y ke dk 5=k — 1) (s — k)! (23)
=1

Probability integral of z can easily be evaluated for any value of s
and k. From (5), we have

2 4=0 % (- x) (24)
i=1 i=1
that is,
z=0(y -sx) (24a)
which gives
6% Var (y)=Varz + 2 (25)

We can get the Var () since we have the Var z from Nagabhushanam
etal {17]as

s(s+1)2s+1) ‘2] (26)

92 Var(y)=[ 3 +5

Of course (26) can also be obtained directly from (22). From
(9), we have

k+1
E(yr = 0 k=1, ..s5, (26a)

and from (11), with the joint density of y; and Vi (k <j), we get
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E(yiy) =G +2)(k +1)/6* (26b)
and
Cov(y;, y) = (k + 1)/0? (26¢)

and finally,

P ) =V + DG+ 1) (26d)

These (26a) to (26d) can also be obtained by using (5).

5. Gamma population

If {x,} is a sequence of independent random variables each hav-
ing gamma distribution

fx)=00x)*" e ¥ (27)
Then from (7), we get, [with f,(y) =f;n(y) = fyp)]
L =fy) [-log {1 - F(y)}]*/n! (28)

which gives

= [f(y)/n.’]riz0 ay o F"*7 (29)

oo . n
where g, , is the coefficient of F” in the expansion of [Z FlG + l)]

I=0
and satisfies the relation

dr. n =4r, n- +ar-1,n—1/2 + - +a0,n—|/(’ +1) (29a)

Noting that in the case of gamma,
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Q-1 k
Fix)=1- kz e 0 x) k! (30)
=0

we get (29) as

o n+ro oy c(a-1)j )

LW =(n! @] Z apn 2 C7) (=1 Z bla )
r=0 j=0 t=0
_e-Oy(j+l)0(6y)t+ a—l] 31)

-1 J
where b, (a,j) is the coefficient of (8 y)' in the expansion of [k z (()y)k/k/]
=0

and b,’s satisfy the relation

b j)=by(a,j--1)+ by (a,j— 1)+ by _,(a,j- D2 +
+ 4+ b g (- Df(a-- 1) (32)
If =1 in (31), last sum on t’s vanish and the second sum gives

(1 — e 9" *" and the first sum on (1 — e 9/n)"*" gives {—log[l —
— (1 — e7®7n)]Y'which is (8 »,,)" and so (31) reduces to (9).

6. Linear combinations

6a: Let

s
T=.Z aiyi, a;i>0 (33)

=1

then the characteristic function of T is, using (11),

=] 1 — it % _LZ’:L:L
()= ) 1 9
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its it 2,]?
) w

Zi=a;ta;,, + +a (34a)

where

and inverting (34), we get the distribution of T as

0 (Zs-xe1) ' e T/Zs-k+1)

s-1
f(T)=t?3l p +
jl-Il (Es—kfl - zj) [Es—k'+l - 21]
jhs-k+1
s
+02Te CTE 217° /11 (2, - ) -
j=2
s-1 0 (Zgg.q) T e TED
e (35)
-t [iﬂz (21 - z:i):l [zx - z;s-k+1]
If we set ay =a,=...=ag=1, then (35) reduces to (22) and g;’s

are aiso such that none of the terms in the denominator of (35) vanishes.

6b. Linear combination of t’s:

s
The characteristic function of X b; t; =w, b; > 0, is, using (10),
1=1

$,(D=1/(1 —it Z,) (I it ) ... (1 —it Zy) (36)

where Z; = b; + b;, , + -+ + bs. Now inverting (36), we get

s e WEke (T, g, )0

fwy=Z — (37
! ,~". Zs_kvr — Zj)
jhs-k+1
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It by =--=bs=1, then (37) reduces to (23) and same condition

on b’s as a’s before.

6c. Linear combination of spacings of t’s

Letvi=¢—t;.(,i=1,2,...5and let

s
v= X ¢ v, ¢;>0witht,=0, C,'?&Cj, LBji=1,2, ..

i=1

Then from (10), it follows that the pdf of v; is

fp)=e%, v;>0, i=1,2,...s

and further v;’s are independent. Characteristic function of v is

s
¢, (1)= l/ﬂ (1 - ¢, (it))
r

Inverting (39), we get the pdfofv as

r=1 j=1
jhr

s 2 s
f)=3% ¢ e"’/"'/_ﬂ (cr — ¢j)
For example, if s =4, and
v=v,+3v,+4v;+2v,

we have

W=21tg+21t3 - t; - 21,

(38)

39)

(40)

(40a)

(40b)
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and hence Z;, =1, Z,=3, 23=4 and 24=2 in (37). So we can use
either (37) or (40) as the case may be. It is also to be noted that

aivi=Zajt; — L )=0 Zuiy; -~ yi_,), i=z2fori=1 (41)

last term includes y,. Further, it is easy to observe that
s s 2
Var v = Vuar % a4 v; = Zl) a; 42)
and
s
Z a} = Var 212 di t; (42a)

where a;’s and d;’s are related.

So using v;’s, it is easier to calculate the variance of ¢;’s instead from
the distribution of #;’s, since they are not independent. For example,
for (40a), we have Var v = 30 which is exactly what we get from (40b)
using variances and covariances of #;’s.

7. Ratio y,/y;,i=1,2,...,s—1

Now from (11), we get by integrating out y;, ,, ..., y,_,, the joint
density of y; and y, as '

oy =y —y) e s 0% it (s —i— 1)/ (43)
0<y,; <y, <eo
Now setting y;/y, = u;, we get the pdf of u; by integrating out y;, as

fup=ut (0 —u)’ " YBU+1,s-0), 0<y; <] (44)
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where B(g, b) is the complete beta function, p (y, > ¢ y;) can be found
by evaluating p (4; > u) by using incomplete beta function tables.
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