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ABSTRACT

The aim of this paper is to show that the theory of (generalized) random sys-
tems with complete connections may serve as a mathematical framework for lear-
ning and adaption. Chapter 1 is of an introductory nature and gives a general des-
cription of the problems with which one is faced. In Chapter 2 the mathematical

model and some results about it are explained. Chapter 3 deals with special lear-
ning and adaption models.

1. Introduction

in various fields of science one is faced with systems which evolve
on two different, but connected levels. Therefore such systems induce
two processes so that the evolution of one process is adapted to the evo-
lution of the other process. According to specific concrete situations
this adaption may also be called learning. We want to discuss such phe-
nomena within a mathematical framework.
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The abstract mathematical model fitting the description of pheno-
mena we are interested in is the so-called generalized random system
with complete connections (abbreviated to GRSCC) and which consist
of two sets, called state space and event space, and two transition laws
which govern the evolution of the system on a step-by-step basis. It is
always assumed that the system operates in discrete time. The first tran-
sition law describes the transition from a state to an event and the se-
cond the transition from a state and an event to a new state. These tran-
sition laws are not in general deterministic but depend on chance (or
eventually on effects which are out of our knowledge so that they seem
to happen in a random fashion).

There are basically two aspects of a theory dealing with learning
and adaption. One aspect concerns the study of learning and adaption
systems with fixed transition laws, e.g., with the aim to discuss its long-
run behaviour, whereas the second aspect refers to situations when one
can influence or control the transition laws in order to achieve a specific
evolution. Therefore we distinguish between systems with fixed transi-
tion laws and systems with controllable transition laws.

A very general situation to which the second aspect is devoted
is the following. A subject (this may also be an automaton) ope-
rates within an environment, i.e., it has to make choices and deci-
sions dependent on its decisions and the evolution of the environment
up to this time, which in turn influence the further development of the
whole system. The system is constituted by the subject, the environ-
ment, and their laws of motion and interaction. Each special possible
sequence of the subject’s decisions and states of the environment resul-
ting from the evolution of the system is evaluated by a real number
(= value of this path). The subject wants to behave, in a certain sense,
optimal or at least expedient with respect to the function evaluating the
paths of the system. The problem is, that the subject does not know
completely the rules or laws of motion which govern the system. So the
subject is faced with the problem to increase its knowledge or informa-
tion about the system’s rules, because a gain of information will enable
it to behave better. Since the only possibility to increase information
about the system consists in observing responses of the environment to
actions taken by the subject, the increase of information is a learning

_problem.
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We think that the theory of GRSCC’s provides an appropriate ma-
thematical framework in which to study stochastic processes arising
from learning and adaption mechanisms and to judge given learning
procedures with respect to their efficiency or to find most efficient, i.e.,
optimal procedures. We have the advantage of having at our disposal a
well developed theory which we can use in analyzing specific models.
In Chapter 2 we present the concept of a GRSCC, a natural extension of
the concept of a random system with complete connections (abbrevia-
ted to RSCC), and we indicate some of the results about it. We further
illustrate the concepts of GRSCC and RSCC in Chapter 3 by means of
special models from psychology, system theory, economics, and sta-
tistics.

2. The mathematical model

In Section 2.1 we present the concept of a GRSCC and explain its

relation to interacting processes. We indicate some of the results known
about (G) RSCC’s in Section 2.2.

2.1. Definition and description

2.1.1. We say that a tuple {(W,W), (X, %), II, P} together with the
set of natural numbers IN serving as parameter set, is a GRSCC if and
only if the following conditions are fulfilled: (i) (W, W) and (X, ¥) are
measurable spaces called the state and event space, respectively; (ii) IT is
a stochatic kernel from W x X to W (i.e., IT is a function IT: W x X x
x W = [0,1] such that for all (w, x)e W x X, Il (w, x,.) is a probability
measure on W and for all B ¢ W, II (., ., B) is a measurable function);
(iii) P is a stochastic kernel from W to %.

Furthermore we say that a GRSCC is an RSCC if and only if the
following condition is fulfilled: there is a measurable application # from
W x X into W such that Il (w, x, B)=1g (u (w, x)) forallwe W, x € X,
and B € W, where 15 stands for the indicator of B.

GRSCC’s were introduced by LeCalvé and Theodorescu [19] and
represent a natural generalization of the concept of an RSCC, which was
defined by losifescu F15] (see also [17], p. 63). An RSCC in its turn ge-
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neralizes the concepts of an OM-chain and that of a chain of infinite or-
der, which were studied by Onicescu and Mihoc [24] and Doeblin and
Fortet [4] respectively in the 1930ies (see [17]). Let us remark that
the theory of these stochastic processes began with Onicescu and Mihoc
[24] and was motivated by the study of certain contagion schemes and
actuarial models.

The definition of a (G) RSCC can be extended to the nonhomoge-
neous case in the sense that all entities constituting it are allowed to
depend on ¢t € IN. Up to a certain degree, nonhomogeneous GRSCC’s
can be reduced to homogeneous ones (see [17] and [18]).

2.1.2. A GRSCC describes the following interaction process (inte-
raction between a state and event process) which reflects learning and
adaption mechanisms.

The system starts at time instant £ = 1 in a given state w; e W.
According to the stochastic kernel P an event x; € X takes place at
t = 1 as arealization of the probability distribution P (wy, .). Given w,
and x,; the system moves to a new state w, € W at time instant ¢ = 2
according to the stochastic kernel II. Now in period ¢ = 2 an event
x, € X is observed as a realization of P (w,, .) etc. RSCC’s are characte-
rized by the fact that the transition from state and event to the next
state is not stochastic but deterministic, i.e., given w,; and x,; then state
w, equalsu (w,, x,).

2.2. Some mathematical results

2.2.1. Let {(W, W), (X, ¥), II, P} be a GRSCC. For each starting
element w € W there are (see [19]) a probability space (£2,K, IP ) and
two sequences of random variables {{,: n = 1} and {§,,:n=1} onit
with values in W and X respectively such that the state sequence
{§,: n =1} and the event sequence {{,: n = 1} are connected as ex-
plained above, i.e., the system moves from §,, to £, by means of P and
from (§,, &,) to §, 41 by means of II. Moreover it turns out that the
state sequence {{,: n = 1} is a general Markov chain with initial state
W and transition probability function Q (w, B)= .f IT (w,x,B) P (w,dx),

weW BeW. {{,:n>1}and {§,: n > 1} are called the associated
processes of a GRSCC.
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An interesting fact is that the concept of a discrete parameter sto-
chastic process with values in a Polish space and that of an RSCC can
be regarded as equivalent. Indeed for each probability space (£2,K, IP )
and each sequence of random variables {£,: n = 1} defined on it with
values in a Polish space X there is an RSCC such that the sequence
{&,: n=1} is the associated (event process of this RSCC (see [23]).

2.2.2. The main questions which arise in the study of GRSCC’s
concern convergence or limit properties of the associated processes. If
one deals with the associated state process {,: n = 1} with starting
point w, we can take advantage of its Markov property and make use
of the theory of general Markov chains. So, if we assume that W and X
are metric spaces both endowed with the o-algebras of Borel sets and
if W is compact, then we can show under certain continuity assump-

tions on the underlying stochastic kernels IT and P that (1/») % o w,)
=1

tends to a limit Q% (w,.) as n = oo, Under additional assum[;tions which
guarantee that ‘“‘enough” probability mass distributed according to
IT (w, x, .) is spread out over the whole W, we get that Q" (w, .) conver-
ges to a limit QT (*) as n > o= which does not depend on the starting
point w. These results are explained and proved in [8].

The important special class of RSCC’s often has to be handled sepa-
rately, since there are some conditions appropiate for RSCC’s which
make no sense for GRSCC’s. So the associated Markov process of a

RSCC can be studied under contraction assumptions on # and P (see
[17] and [22]).

Note that convergence properties of the n-step transition probabili-
ty Q" of {§,:n=11},ie.,Q" (W, A)=1P, ({ni1 € A), imply corres-
ponding properties for P*, where P* denotes the distribution of §,,, i.e.,
P" (w,A)=P,, (& €A). This is due to the following relation:
P (w, A)= jw Q" (w, dw') P (w', A).

The associated event process {£,: n = 1} of a (G) RSCC can also
be studied directly. This is done for GRSCC’s in [19]. For a compren-
sive analysis of the associated processes of an RSCC we refer to the mo-
nographs of losifescu and Theodorescu [17] and Norman [22]. Recent
results concern also functions of the event variables &,, n = 1 (see
[25]) and classification criteria (see [26] and [27]). '
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2.2.3. If we want to control, i.e., in a certain sense to optimize the
functioning of a GRSCC, it is necessary to introduce a real-valued func-
tion f: X = IR which evaluates the events. If f plays the role of a pe-
nalty function, then we are interested in finding transition laws I1 which
lead to a reduction or eventually to a minimum of the induced penalty,
having only partial or no knowledge about P. From a formal view point
this problem is complementary to the problem of dynamic program-
ming (see [14]) (we identify W with the state space of the program and
X with the action space), where Il is the (known) law of nature and P
under the control of the statistician.

If we want to characterize the learning performance of a transition
law II within a GRSCC by means of the penalty function f, we are led
to consider the expected penalty in period n given the state {, at
period n:

o= [ FOOP G d0)=r ).

Given a history or path of the system up to §,, i.e., given values for
$1 =w, &, ..., {,, then we can compare the expected penalty in time n
and in period (n + 1) conditioned by the pathup to§,,. If foralln =1
the latter one is less than or equal to the first one, then we call the
transition law Il under consideration absolutely expedient with respect
to P, or if P is not known exactly but only that Pe Py, where P, isa
subset of the set of all transition laws P from W to ¥, we call Il absolu-
tely expedient with respect to P. In other words, we call a transition
law IT absolutely expedient with respect to P, if and only if

E, (0, 1$1,8)=E, (0, 15,)<p, P, —as.
foraln > 1,weW,and Pe P,. Here IE, denotes the expectation

with respect to IP .

A sufficient condition (see [10, 11]) for absolute expediency with
respect to P, is, that the inequality

]Xf(x)l’2 w, dx) < _jxf(x)P(w, dx)
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holds for all w € W and P € P,. This criterion often permits with a

reasonable amount of computation the verification of absolute expe-
diency.

A very useful consequence of absolute expediency is that the se-
quence {p,: n = 1} constitutes a supermartingale with respect to the
increasing sequence of o-algebras generated by the sequence {§,: n=>1}
Therefore the sequence {p, : n = 1} converges a.s., if, e.g., the p, s are
all nonnegative. This in turn allows to draw conclusions about the
asymptotic expected penalty and often about convergence of the se-
quence {{,: n =1} itself.

Based on the expected penalty, we can define an asymptotic opti-
mality criterion for transition laws Il by asking that this asymptotic ex-
pected penalty takes its least possible value. Whereas absolute expedien-
cy is a structural, i.e., a qualitative property of a transition law, optima-
lity is a quantitative concept. So for a given scheme only very special
transition laws will be optimal: perhaps we can only find nearly optimal
ones. Therefore optimality and e-optimality (i.e., nearly optimal laws)
are defined for a whole family F of transition laws with respect to a
set of admissible transition laws P 4, in the sense that we call a family

¥ of transition laws from W x X to W optimal with respect to P, if
and only if for each w € W there is a transition law Il € F such that

lim E, p, = inf fo(x)P(w, dx)
forallP e P,. Here IE“H, denotes the expectation with respect to the
probability measure IP,, when II € F is used. Therefore ,,li.[.n.,., ]Eg Pp

is the asymptotic expected penalty, if the system starts in w and the
transition law I € F is applied.

Furthermore we call a family F of transition laws from W x X to
W e-optimal with respect to P, if and only if for each w € W and
€ > 0 there is a transition law I1 € F such that

lim E} p, — inf ff(x)P(w, dx) < €
N wEW X
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for all P € P,. This means that under the transition law II the asymp-
totic expected penalty approaches for all P e P, its least possible value
up to €.

3. Special models

In what follows we intend to discuss some models with fixed tran-
sition laws in Section 3.1 and some models with controllable transition
laws in Section 3.2. The link between the first kind and the second kind
of models will be the well known Bush-Mosteller learning model. For
some other mathematical models dealing with learning and adaption we
refer to the survey papers of Fu {5] and Narendra and Thathachar [21].

3.1. Models with fixed transition laws

3.1.1. In [2] and [20] Brock and Mirman study the growth of an
economy with respect to a quantity “capital per head”. In their model
capital is an amount of money which indicates the value of all goods
and resources available in the economy. In each time period of the de-
velopment of the economy a certain amount of this capital is invested
into a production process and the rest is free for consumption. Produc-
tion and consumption are allowed to depend on chance. Under certain
homogenity assumptions on the production and consumption functions
we may consider the quantity capital per head, i.e., capital divided by
the number of economic agents, instead of the total amount of capital.
Then, if k,, is the capital per head at the beginning of period n and the
environmental situation, i.e., the chance variable, takes on the value x,,,
the output of the production process is given by f (k,,, x,,), where f de-
notes the production function and the actual consumption is given by
¢ (k,, x,), where ¢ denotes the consumption function which is chosen
so as to maximize a certain utility criterion. Thus given k, and the state
of environment x,, capital per head at the beginning of period (n + 1)
will be

kn+1 =f(kn,xn)—c(kn,xn).
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Given an initial value k,, we want to know, whether the adjustment

from k, to k,,, by means of f, ¢, and the distribution of the chance
variable leads to the convergence of the sequence of variables
{k,: n=1}. A limit k.. of this sequence is usualy called steady state
of the underlying economy.

The model described above can be brought into the form of an

RSCC and analyzed by means of the methods known from there
(see [T]).

3.1.2. The most well known learning model which is formalized as
an RSCC is that introduced by Bush and Mosteller [3] (see also [16])
and abbreviated here to BM-model. In such a model a learning subject
has to choose in each one of a sequence of time periods an alternative
s out of a finite set S. As a consequence of its choice it gets a response ¢
out of a finite set T according to a transition probability L from S to 7.
If the learning subject has an initial probability distribution m2; over the
set of alternatives reflecting its preference, then it chooses in period 1
an alternative s, according to m; and as consequence of the choice s,
and the response ¢, following s,, the subject’s attitude to the different
alternatives is changed by means of a function &; & assigns to each
me M(S), (here M(S) isthe set of all probability measures on S) and
(s, t) € S x T a new probability measure s (i, s, t) on S. Obviously
this model can be formalized as an RSCC by setting: W = M (S),
X=SxT, uw x)=h(m,s, t), and

Pm, S'xTh= X L (', thm(".
s’€ES’
t’€ET’

3.1.3. The extension of an RSCC to a GRSCC means for BM-mo-
dels to allow that the change of subject’s attitude to the alternatives
from period to period does not only depend on the chosen alternative
and the response, but also on chance. This amounts to the fact, that the

function A is subsistuted by a transition probability II. This model may
be called a generalized BM-model.

In the context of a (generalized) BM-model the associated Markov
process {{,: n = 1} describes the subject’s tendency for the different
alternatives. So convergence of the sequence {,: n = 1} means that,
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as a consequence of the experience, the subject makes by choosing al-
ternatives and being confronted with responses, the changes of its atti-
tude to the alternatives become smaller and smaller as time goes on, so
that the subject finally reaches an attitude which remains unchanged.

Another learning model from mathematical psychology which may
be formalized as a GRSCC is discussed by Rhenius [28].

3.2. Models with controllable transition laws

3.2.1. A model which contains the generalized BM-model as a spe-
cial case is the so-called general control system (abbreviated to GCS).
It was introduced [10, 11] as a model for the interaction of a random
automaton with a random environment. There is an extensive literature
dealing with models of this kind. We refer to [5], [21], and [30].

The GCS consists of a random automaton A, a random environ-
ment E , and an interaction rule X between E and A. A in turn con-
sists of measurable spaces (4, A ), (B, B ), and (C, C ) called input
space, output space, and state space of A respectively, and a stochastic
kernel " from C x 4 to C x B (law of motion of A ). E consists of
two measurable spaces (E, E ) and (B, B ), called space of environmen-
tal situations and imput space of the environment respectively, and of a
stochastic kernel ¥ from F x B to E (law of motion of E ). Note that
the space B respresents the outputs of the automaton as well as the in-
puts for the environment. The interaction rule X is a stochastic kernel
from E x B to A which produces the inputs for the automaton in de-
pendence of the environmental situation. Then given starting points
(e, b, ¢) € E x B x C there are stochastic processes representing the se-
quence of environmental situations, of outputs of the automaton, of
states of the automaton, and of outputs of the environment = inputs for

the automaton, which evolve according to the transition laws of the
GCS.

With each GCS we can associate a GRSCC. Take: W =E x B x C;
X=A4A;M (e b,c,a, EExB xC)Y=¥(, b, EYT (c, a, B' x C") for
(e,b,c)eExBxC,aeA,E'e E,B'e B,andC'e C ;P(e,b,c,A")=
=X(e,b, A)for(e,b,c)e ExBxCandA'e A.

The method of deriving convergence properties of the associated
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Markov process {{,: n =2 1} by means of continuity assumptions on
the underlying stochastic kernels, which is known from the theory of

GRSCC’s (see [8]), is applied in [9] to study the associated processes
of a GCS.

If the outputs of the environment = inputs for the automaton are
evaluted by a (real-valued) penalty function f : A = IR, we are inte-
rested to know whether the transition law of the automaton has the
property that it influences the evolution of the system to the effect
that the resulting penalty values are reduced or minimized in a certain
sense, whereas one has only partial or no knowledge about the transi-
tion law of the environment and the interaction rule.

In certain situations we can even control the transition law of the
automaton, i.e., we can choose a transition law out of a certain set of
transition laws. Our device should be such that we choose a law which
behaves most efficiently in the above sense. This amounts to the pro-
blem to “learn” which automaton outputs lead by means of X to auto-
maton inputs with small penalty values. This problem was investigated
in [10, 11] by making use of the methods described in Section 2.2.3.

Let us note also that absolute expediency and (e-) optimality of
special BM-models are examined for example in [21].

3.2.2. Let us consider the so-called two-armed bandit problem, a
problem well-known in statistics. Here a controller has to choose in
each time period one of two experiments (= arms), the outcomes of
which are success (= Q) or failure (= 1). The probabilities of success are
unknown. The controller wants to minimize his expected proportion of
failures. This will be achieved, if he plays the arm with the greater pro-
bability for success. So the player has to learn by experimenting what
arm has the better success probability and simultaneously he has to mi-
nimize the proportion of failures. In [12] two learning or decision pro-
cedures for this problem are formalized by means of an RSCC with an
additional penalty function. It is shown that the optimality concept for
GCS’s coincides with the criterion of minimizing the expected propor-
tion of failures and that the two procedures are e-optimal.

3.2.3. Rothschild [29] formulates a problem arising in economics,
which may be studied in a simplified version as a two-armed bandit pro-
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blem in which the sucess probabilities are not completely unknown, but
an a priori distribution for these quantities is given. The problem con-
sists of finding a most profitable price for an economic good. In each
time period a store owner can charge a price for the good and as a result
of his choice the good will be sold (= success) or not (= failure) in this
time period. The probability for sale depends on the price which is clai-
med and this dependence is unspecified up to an a priori distribution
over the success probabilities. Of course the store owner wants to be-
have in such a way as to maximize his expected total profit in case of a
finite planning horizon or his expected discounted total profit in case
of an infinite horizon. If only two prices are considered this leads to a
two-armed bandit problem. The above problem of finding out a most
profitable price may be studied also by means of a GRSCC with an addi-
tional penalty function, as well as by stochastic approximation techni-
ques [13].

3.2.4. In mathematical economics several authors (e.g., [1] and [6])
have dealt with the problem of a planner, who has to quote a price for
an economic good such that production and consumption of this good
are equal, i.e., excess supply of the good is zero. If it is assumed that
the excess supply is not uniquely determined by the price but depends
on the price only by means of a stochastic kernel, which in turn is near-
ly unknown, then the planner is confronted with the problem to learn
something about this atochastic kernel in order to quote the right price.
This learning process, which should lead to an equilibrium price, is ca-
lled tatonnement process in the economic literature and can be handled
by means of a GRSCC.
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