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DISCUSSION

E.T. JAYNES (Washington University):

It is always interesting to recall the arguments that Jeffreys used to find priors. The
case recounted by Zellner is a typical example where it appears at first glance that we
have nothing to go on; yet by thinking more deeply, Jeffreys finds something. He
shows an uncanny ability to see intuitively the right thing to do, although the
rationalization he offers is sometimes, as Laplace said of Bayes’ argument, *‘fine et trés
ingénieuse, quoiqu’un peu embarrassée’’. It was from studying these flashes of
intuition in Jeffreys that I become convinced that there must exist a general formal
theory of determination of priors by logical analysis of the prior information-and that
to develop it is today the top priority research problem of Bayesian theory.

Pragmatically, the actual results of the Jeffreys-Zellner-Siow and Bernardo tests
seem quite reasonable; without considerable analysis one could hardly say how or
whether we should want them any different. Likewise, there is little to say about the
mathematics, since once the premises are accepted, all else seems to follow in a rather
straightforward and inevitable way. So let us concentrate on the premises; more
specifically, on the technical problems encountered in both works, caused by putting
that lump of prior probability on a single point A = 0.

1. The problem

In most Bayesian calculations the same prior appears in numerator and
denominator, and any normalization constant cancels out. Usually, passage to the limit
of an ‘‘uninformative” improper prior is then uneventful; i.e., our conclusions are very
robust with respect to the exact prior range. But in Jeffreys’ significance test this
robustness is lost, since K=p(D|H,)/p(D|H,) contains in the denominator an
uncancelled factor which is essentially the prior density w(\) at A=x. Then in the limit
of an improper prior we have K- o independently of the data D, a result given by
Jeffreys (1939, p. 194, Eq. 10), and since rediscovered many times. Note that the
difficulty is not due solely to the different dimensionality of the parameter spaces; it
would appear in any problem where we think of H, as specifying a definitive, fixed
prior range, but fail to do the same for H;.

Jeffreys (1961) dealt with this and other problems by using a Cauchy prior w(A | o)
scaled on ¢ in the significance test, although he would have used a uniform prior
w(A\) =1 in the same model H, had he been estimating \. But then a question of principle
rears up. To paraphrase Lindley’s rhetorical question: Why should our prior
knowledge, or ignorance, of A depend on the question we are asking about it? Even
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more puzzling: why should it depend on another parameter ¢, which is itself unknown?
One feels the need for a clearer rationalization.

Furthermore, the difficulty was not really removed, but only concealed from view,
by Jeffreys’ procedure. All his stated conditions on the prior would have been met
equally well had he chosen a Cauchy distribution with interquartile span 4¢ instead of
o; but then all his K-values would have been quadrupled, leading to indifference at a
very different value of the t-statistic [see Eq. (5-13) below]. We do not argue that
Jeffreys made a bad choice; quite the contrary. Our point is rather that in his choice
there were elements of arbitrariness, arising from a still unresolved question of
principle. Pending that resolution, one is not in a position to say much about the
‘“‘uniqueness’’ or ‘‘objectivity’’ of the test beyond the admitted virtue of yielding
results that seem reasonable. -

Bernardo comes up against just the same problem, but deals with it more
forthrightly. Finding again that the posterior probability P, of the null hypothesis H,
increases with the prior variance ¢, in a disconcerting way, he takes what I should
describe as a meat-axe approach to the difficulty, and simply chops away at its prior
probability p until P, = pk/(pk + 1-p) is reduced to what he considers reasonable (from
the Jeffreys-Zellner-Siow standpoint he chops a bit too much, since his P, tends only to
1/2 on prolonged sampling when H, is true). This approach has one great virtue:
whereas the Jeffreys results tended to be analytically messy, calling for tedious
approximations, Bernardo emerges triumphantly (in the limit of large o,) with a
beautifully neat expression (Eq. (11)) which has also, intuitively, a clear ring of truth to
it.

But for this nice result, Bernardo pays a terrible price in unBayesianity. He gets it
only by making p vary with the sample size n, calling for another obvious paraphrase of
Lindley. This elastic quality of his prior is rationalized by an information-theoretic
argument; it is, in a sense, the prior for which one would expect (before seeing the data)
to learn the most from the experiment. But is this the property one wants?

If a prior is to incorporate the prior information we had about X before the sample
was observed, it cannot depend on the sample. The difficulty is particularly acute if the
test is conducted sequentially; must we go back to the beginning and revise our prior as
each new data point comes in? Yet after all criticisims I like the general tone of
Bernardo’s result, and deplore only his method of deriving it.

The common plot of these two scenarios is: we (1) start to apply Bayes’ theorem in
what seems a straightforward way; (2) discover that the result has an unexpected
dependence on the prior; (3) patch things up by tampering with the prior until the
expected kind of result emerges. The Jeffreys and Bernardo tamperings are similar in
effect, although they offer very different rationalizations for what they do. But in both
cases the tampering has a mathematical awkwardness and the rationalization a certain
contrived quality, that leads one to ask whether some important point has been missed.

Now, why should that first result have been unexpected? If, according to H,, we
know initially only that X is in some very wide range 20,;, and we then receive data
showing that it is actually within 2¢/y/n of the value predicted by H,, -as a physicist
would put it, ‘‘the data agree with H, to within experimental error’’- that is indeed very
strong evidence in favor of H,. Such data ought to yield a likelihood ratio K = /ng,/o



620

increasing with oy, just as Bernardo finds. This first result is clearly the correct answer
to the question Q, that was being asked. )

If we find that answer disconcerting, it can be only because we had in the back of
our minds a different, unenunciated question Q,. On this view, the tampering is seen as
a mutilation of equations originally designed to answer Q,, so as to force them to
answer instead Q,.

The higher-level question: ‘‘Which question should we ask?”’ does not seem to
have been studied explicitly in statistics, but from the way it arises here, one may
suspect that the answer is part of the necessary ‘‘software’’ required for proper use of
Bayesian theory. That is, just as a computer stands ready to perform any calculation we
ask of it, our present theory of Bayesian inference stands ready to answer any question
we put to it. In both cases, the machine needs to be programmed to tell it which task to
perform. So let us digress with some general remarks on question-choosing.

2. Logic of Questions

For many years I have called attention to the work on foundations of probability
theory by R.T. Cox (1946,1961) which in my view provides the most fundamental and
elegant basis for Bayesian theory. We are familiar with the Aristotelian deductive logic
of propositions; two propositions are equivalent if they say the same thing, from a
given set of them one can construct new propositions by conjunction, disjunction, etc.
The probability theory of Bernouilli and Laplace included Aristotelian logic as a
limiting form, but was a mathematical extension to the intermediate region (0 <p<1)
between proof and disproof where, of necessity, virtually all our actual reasoning takes
place. While orthodox doctrine was rejecting this as arbitrary, Cox proved that it is the
only consistent extension of logic in which degrees of plausibility are represented by
real numbers.

Now we have a new work by Cox (1978) which may prove to be of even more
fundamental importance for statistical theory. Felix Klein (1939) suggested that
questions, like propositions, might be used as logical elements. Cox shows that in fact
there is an exactly parallel logic of questions: two questions are equivalent if they ask
the same thing, from a given set of them one can construct new questions by
conjunction (ask both), disjunction (ask either), etc. All the ‘‘Boolean algebra’ of
propositions may be taken over into a new symbolic algebra of questions. Every
theorem of logic about the ‘‘truth value’’ of propositions has a dual theorem about the
‘‘asking value’’ of questions.

Presumably, then, besides our present Bayesian statistics -a formal theory of
optimal inference telling us which propositions are most plausible- there should exist a
parallel formal theory of optimal inquiry, telling us which questions are most
informative. Cox makes a start in this direction, showing that a given question may be
defined in many ways by the set of its possible answers, but the question possesses an
entropy independent of its defining set, and the entropies of different questions obey
algebraic 11les of combination much like those obeyed by the probabilities of
propositions,

The importance of such a theory, further developed, for the design of experiments
and the choosing of procedures for inference, is clear. For over a century we have
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argued over which ad hoc statistical procedures ought to be used, not on grounds of
any demonstrable properties, but from nothing more than ideological committments to
various preconceived positions. There is still a great deal of this in my exchanges with
Margaret Maxfield and Oscar Kempthorne in Jaynes (1976), and even a little in the
exchange with Dawid, Stone, and Zidek over marginalization in Jaynes (1980). A
formal theory of optimal inquiry might resolve differences of opinion in a way that
Wald-type decision theory and Shannon-type information theory have not
accomplished.

Our present problem involves a special case of this. If, seeing the answer to
question @, we are unhappy with it, what alternative question Q, did we have,
unconsciously, in the back of our minds? Is there a question Qs that is the optimal one
to ask for the purpose at hand? Since the conjectured formal theory of inquiry is still
largely undeveloped, we try to guess some of its eventual features by studying this
example.

Note that the issue is not which question is ‘‘correct’’. We are free to ask of the
Bayesian formalism any question we please, and it will always give us the best answer it
can, based on the information we have put into it. But still, we are in somewhat the
position of a lawyer at a courtroom trial. Even when he has on the stand a witness who
knows all the facts of the case and is sworn to tell the truth, the information he can
actually elicit from this witness still depends on his adroitness in asking the right
questions.

If his witness is unfriendly, he will not extract any information at all unless he
knows the right questions to force it out, phrasing them as sharp leading questions and
demanding unequivocal ‘‘yes’’ or ‘‘no’’ answers. But if a witness is friendly and
intelligent, one can get all the information desired more quickly by asking simply,
““Please tell us in your own words what you know about the case?’’ Indeed, this may
bring out unexpected new facts for which one could not have formulated any specific
question.

Significance tests which specify a sharply defined hypothesis and preassigned
significance level, and demand to know whether the hypothesis does or does not pass at
that level, therefore in effect treat probability theory as an unfriendly witness and
automatically preclude any possibility of getting more information than that one bit
demanded.

Suppose we try instead the opposite tactic, and regard Bayesian formalism as a
friendly witness, ready and willing to give us all the pertinent information in our
problem even information that we had not realized was pertinent if we only allow if the
freedom to do so. Instead of demanding the posterior probability of some sharply
formulated null hypothesis H,, suppose we ask of it only, ‘““‘Please tell us in your own
words what you know about A\?”’ Perhaps by asking a less sharp and restrictive
question, we shall elicit more information.

3. Information from questions
Evidently, to deal with such problems one ought to be an information theorist,
- and not only in the narrow sense of One-Who-Uses-Entropy. In the present problem
we are concerned not only with the range of possible answers, as measured by the
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entropy of a question, but also with the specific kind information that the question can
elicit. In the following we use the word “‘information’’ in this semantic sense rather
than the entropy sense. '

All statistical procedures are in the last analysis prescriptions for information
processing: what information have we put into our mathematical machine, and what
information are we trying to get out of it? In these terms, what is the difference -if any-
between significance testing and estimation? Having put certain information (model,
prior, and data) into our hopper, we may carry out either, by asking different
questions. But the answers to different questions do not necessarily convey different
information.

The tests considered by Zellner and Bernardo sought information that can help us
decide whether to adopt a new hypothesis H; with a value of \ different from its
currently supposed value A=0. Presumably, any procedure which yields the same
information would be equally acceptable for this purpose, even though current
pedagogy might not call it a ‘‘significance test’’.

Now this information criterion establishes an ordering of different procedures, or
“‘tests’’, rather like the notion of admissibility. If test B (which answers question Q)
always gives us the same information as test A, and sometimes more, then B may be
said to dominate A in the sense of information yield, or question Q, dominates Q. in
‘“‘asking power’’; and if B requires no more computation, on what grounds could one
ever prefer A?

In my work of 1976 (p. 185 and p. 219), I showed that the original Bayesian
sigificance test of Laplace, which asks for the posterior probability P; of a one-sided
alternative hypothesis, dominates the traditional orthodox ¢-test and F-test in just this
sense. That is, given P, we know what the verdict would be, at any significance level,
for all three of the corresponding orthodox tests (one equal-tails and two one-sided; but
the veredict of any one orthodox test is far from determining P;. Thanks to Cox, we
have now a much broader view of this phenomenon.

Let us call a question simple if its answer is a single real number; or in Cox’s
terminology, if its irreducible defining set is a set of real numbers. For example: ‘“What
is the probability that X, or some function of \, lies in a certain region R?”’

In any problem involving a single parameter A for which there is a single sufficient
statistic u, then given any simple question Q, about A, the answer will be, necessarily,
some function a(u). Given any two such questions Q., Qs and any fixed prior
information, the answers a(u), b(u), being functions of a single variable &, must obey
some functional relation a=f(b). If f(b) is single-valued, then the answer to Q, tells us
everything that the answer to Q, does. As Cox puts it, ““An assertion answering a
question answers every implicate of that question’’. If the inverse function b=f(a) is
not single-valued, then Q, dominates Q..

In the case of a single sufficient statistic, then, any simple question whose answer is
a strict monotonic function of u, yields all the information that we can elicit about \,
whatever question we ask; and it dominates any simple question whose answer is not a
strict monotonic function of . But this is just the case discussed by Bernardo; he
considers o known, and consequently x is sufficient statistic for A. Since his odds ratio
K(x) is not a strict monotonic function of x, we know at once that Bernardo’s test is
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dominated by another.

The Jeffreys-Zellner-Siow tests are more subtle in this respect, since ¢ is unknown,
and consequently there are two jointly sufficient statistics (x,s). Given two simple
questions Q,,Qs with answers a(x,s), b(x,s), the condition that they ask essentially the
same thing, leading to a functional relation a=f{(4), is that the Jacobian
J = d(a,b)/d(x,s) should vanish. If J#0, then neither questions can dominate the oiher
and no simple question can dominate both. But any two simple questions for which
(x,s) are uniquely recoverable as single-valued functions x(a, b), s(a, b) will jointly elicit
all the information that any question can yield, and thus their conjunction dominates
any simple question.

We may, therefore, conclude the following. Since Jeffreys’ test asks a simple

question, whose answer is the odds ratio K(x,sJ, it can be dominated by a compound
question, the conjuction of two simple questions. Indeed, since K depends only on the
magnitude of the statistic ¢, it is clear that Jeffreys’ question is dominated by any one
simple question whose answer is a strict monotonic function of ¢.
These properties generalize effortlessly to higher dimensions and arbitrary sets.
Whenever sufficient statistics exist, the most searching questions for any statistical
procedure, -whatever current pedagogy may call it- are those (simple or compound)
from whose answers the sufficient statistics may be recovered; and all such questions
elicit just the same information from the data.

As soon as 1 realized this, it struck me that this is exactly the kind of result that
Fisher would have considered intuitively obvious from the start; however, a search of
his collected works failed to locate any passage where such an idea is stated. Perhaps
others may recall instances where he made similar remarks in private conversation; it is
difficult to believe that he was unaware of it.

With these things in mind, let us re-examine the rationale of the Jeffreys-Zellner-
Siow and Bernardo tests.

4. What is our rationale?

In pondering this -trying to see where we have confused two different questions
and what the question Q, is- I was struck by the constrast between the reasoning used in
the proposed tests and the reasoning that physicists use, in everyday practice, to decide
such matters. We cite one case history; recent memory would yield a dozen equally
good, which make the same point.

In 1958, Cocconi and Salpeter proposed a new theory H, of gravitation, which
predicted that the inertial mass of a body is a tensor. That is, instead of Newton’s
F=Ma, one had F,=YXM,a,. For terrestrial mechanics the principal axes of this tensor
would be determined by the distribution of mass in our galaxy, such that with the x-axis
directed toward the galactic center, M../M,=M./M..=(1+)). From the
approximately known galactic mass and size, one could estimate (Weisskopf, 1961) a
value A =108,

Such a small effect would not have been noticed before, but when the new
hypothesis H, was brought forth it became a kind of challenge to experimental
-physicists: devise an experiment to detect this effect, if it exists, with the greatest
possible sensitivity. Fortunately, the newly discovered Mossbauer effect provided a test



624

with sensitivity far beyond one’s wildest dreams. The experimental verdict (Sherwin,
et.al, 1960) was that \, if it exists, cannot be greater than |\| <10-'5. So we forgot
about H, and retained our null hypothesis: H,=Einstein’s theory of gravitation, in
which A=0.

From this and other case histories in which other conclusions were drawn, we can
summarize the procedure of the physicist’s significance test as follows: (A) Assume the
alternative H,, which contains a new parameter A, true as a working hypothesis. (B) On
this basis, devise an experiment which can measure N\ with the greatest possible
precision. (C) Do the experiment. (D) Analyze the data as a pure estimation problem-
Bayesian, orthodox, or still more informal, but in any event leading to a final ‘‘best”’
estimate and a statement of the accuracy claimed: (\).., =X ‘=t6\. It is considered good
form to claim an accuracy oA corresponding to at least two, preferably three, standard
deviations. (E) Let A, be the correct value according to the null hypothesis H, (we
supposed A, =0 above, but it is now best to bring it explicitly into view), and define the
“statistic’’ 1 = (A\’-A\,)/6A. Then there are three possible outcomes:

If |t <1, retain H, STATUS QUO
If || > >1, accept Hy, AWARD NOBEL PRIZES
If 1 < |¢] <3, withhold judgment SEEK BETTER EXPERIMENTS

That is, to within the usual poetic license, the reasoning format in which the
progress of physics takes place.

You see why I like the actual results reported here by Zellner and Bernardo,
although I find their rationalizations puzzling. They did indeed find, as the criterion for
accepting H,, that the estimated deviation |N’-\,| should be large compared to the
accuracy of the measurement, considered known (¢/+/n) in Bernardo’s problem, and
estimated from the data in the usual way (s/+/n) in Zellner’s.

It is in the criterion for retaining A, that we seem to differ; contrast the physicist’s
rationale with that usually advanced by statisticians, Bayesian or otherwise. When we
retain the null hypothesis, our reason is not that it has emerged from the test with a
high posterior probability, or even that it has accounted well for the data. H, is retained
for the totally different reason that if the most sensitive available test fails to detect its
existence, the new effect (A-A,) can have no observable consequences. That is, we are
still free to adopt the alternative H, if we wish to; but then we shall be obliged to use a
value of X so close to the previous \, that all our resulting predictive distributions will be
indistinguishable from those based on H,.

In short, our rationale is not probabilistic at all, but simply pragmatic; having
nothing to gain in predictive power by switching to the more complicated hypothesis
H,, we emulate Ockham. Note that the force of this argument would be in no way
diminished even if H, had emerged from some significance test with an extremely low
posterior probability; we would still have nothing to gain by switching. Our acceptance
of H, when |[/]>>1 does, however, have a probabilistic basis, as we shall see
presently,

Today, most physicists have never heard the term ‘‘significance test’’.
Nevertheless, the procedure just described derives historically from the original tests
devised by Laplace in the 18’th Century, to decide whether observational data indicate
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the existence of new systematic effects. Indeed, the need for such tests in astronomy
was the reason why the young Pierre Simon developed an interest in probability theory,
forty-five years before he became the Marquis de Laplace. This problem is therefore
the original one, out of which ‘‘Bayesian statistics’’ grew.

As noted also by E.C. Molina (1963) in introducing the photographic reproduction
of Bayes’ paper, even the result that we call today ‘‘Bayes’ theorem’’ was actually given
not by Bayes but by Laplace (the only valid reason I have found for calling it ‘‘Bayes’
theorem’’ was provided at this meeting; ‘‘There’s no theorem like Laplace’s theorem’’
does not set well to Irving Berlin’s music). Molina also offers some penetrating remarks
about Boole’s work, showing that those who have quoted Boole in support of their
criticisms of Bayes and Laplace may have mistaken Boole’s intention.

Now, although Laplace’s tests were thoroughly ‘‘Bayesian’’ in the sense just
elucidated, they encountered no such difficulty as those found by Jeffreys and
Bernardo; he always got clear-cut decisions from uniform priors without tampering. To
see how this was managed, let us examine the simplest of all Laplacian significance
tests.

As soon as fairly extensive birth records were kept, it was noticed that there were
almost always slightly more boys than girls, the ratio for large samples lying usually in
the range 1.04<(n,/n,)<1.06. Today we should, presumably, reduce this to some
hypothesis about a difference in properties of X and Y chromosomes (for example, the
smaller Y chromosome, leading to a boy, would be expected to migrate more rapidly).
But for Laplace, knowing nothing of such things, the problem was much simpler.
Making no reference to any causal mechanism, he took the model of Bernoulli trials
with parameter \ = probability of a boy.

His problem was then: given specific data D= {n,,n.}, do these data indicate the
existence of some systematic cause favoring boys? Always direct and straightforward in
his thinking, for him the proper question to ask of the theory was simply:
Q. =*“Conditional on the data, what is the probability that A\ >(1-\)?”> With uniform
prior, answer was

(n+1)! (1
Po= —— 2 [, N1y
ny! n,!

with n=n, +n,, \,=1/2. In this Essai Philosophique Laplace reports many results from
this, and in the Theorie Analytique (Vol. 2, Chap. 6) he gives the details of his rather
tedious methods for numerical evaluation.

Needless to say, Laplace was familiar with the normal approximation to p(d\ | D),
the inverse of the de Moivre-Laplace limit theorem. But Laplace also realized that the
normal approximation is valid only within a few standard deviations of the peak, and
when the numbers n,,n, become very large, it can lead easily to errors of a factor of
101 in P, /(1-P,); hence his tedious methods.

Bernardo’s example of Mrs. Stewart’s telepathic powers, where the null hypothesis
value \,=0.2 is about 24 standard deviations out, is another instance where the normal
approximation leads to enormous numerical errors in K (many millions, by my
estimate).

40
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But pragmatically, once it is-estimated that an odds ratio is about 10'%, it hardly
matters if the exact value is really only 10}2°, Once it is clear that the evidence is
overwhelmingly in favor of H,, nobody cares precisely how overwhelming it is. After
Laplace’s time, physicists lost interest in his accurate but tedious evaluations of P;; for
the criterion that we have overwhelming evidence in favor of a positive effect \ > \,),
is just that the overwhelmingly greater part of the mass of the posterior distribution
p(d\| D) shall lie to the right of A,. In the above example, the peak and standard
deviation of p(d\|D) are \’ = n,/n, 6\ = [N'(1-A")/n]’? and this criterion reduces to
the aforementioned t=(\".\,)/6x > > 1, of the modern physicist’s significance test-
just the same criterion that Jeffreys and Bernardo arrive at in their different ways.

We have noted above that the orthodox t-test and F-test are dominated by
Laplace’s, and argued that the Jeffreys and Bernardo tests must also be dominated by
some other. Let us now compare their specific tests with the ones Laplace would have
used in their problems.

5. Comparisons with Laplace
In Bernardo’s problem we have a normal sampling distribution p(dx|\,c) ~ N(\,0)
with ¢ known. Hypothesis H, specifies A = \,, H; @ normal prior w(d\ | H;) ~ N(uy,0y),
leading to a normal posterior distribution p(d\ | D,H;) ~ N(\’,6\) where
(6N)2 = not+oy? 5.1
N = n(dN o)t x + (BN 01)uy (5.2)
Laplace, asking for the probability of a positive effect, would calculate

P, = p(A\>\,|D,Hy) = &) (5.3)

where $(7) is the cumulative normal distribution, and as always, £ = (\"-\,)/8A.
Bernardo (Eq. 9) finds for the posterior odds ratio

K, = p(H,|D)/p(H,|D) = exp(-R/2) (5.4)
where
X-No)? X - puq)?
R = ( ) _ (x-p1) . (5.5)
o*/n oi+0%/n

But by algebraic rearrangement, we find this is equal to
R=1r-w? (5.6)

wlhere w == (u4-\,)/0, is independent of the data and drops out if p;=N, orif g; — .
Bernardo v ould then find for the posterior probability of the null hypothesis
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Py = p(H,|D) = [exp(:*/2) + 1j! (5.7)

and comparing with (5.3) we have, as anticipated, a functional relation P, = f(P,). To
see the form of it, I plotted P, against P, and was surprised to find a quite accurate
semicircle, almost as good as one could make with a compass. To all the accuracy one
could use in a real problem, the functional relation is simply

P, = [P.(1-P)]'?, 0=pP =1 (5.8

The error in (5.8) vanishes at five points (0 < P, < 1).

Since P, = f(P,) is single-valued while the inverse function is not, we have the
result that Laplace’s original significance test does, indeed, dominate Bernardo’s. As
stressed in Jaynes (1976), one-sided tests always dominate two-sided ones; gives P, we
know everything that Bernardo’s K or P, can tell us; and if 7] > >1 we know in
addition whether A >\, or A <)\,, which P, does not give.

Of course, in this case one can determine that extra bit of information from a
glance at the data; so the mere fact of domination is hardly a strong selling point. What
is important is that Laplace’s method achieves this without any elements of
arbitrariness or unBayesianity.

In Jeffreys’ problem we have the same sampling distribution, with the standard
likelihood function L(\,0) = o°n exp[-ns?Q*(\)/20?], where

oM = [1+(-x)*/s%12 (5.9

H, and H, assignh common priors do/o, but H, specifies A\ = \,, while H, assigns the
Cauchy prior p(d\ | o,H;) = w(\|o)d\ with the density
" ac
mA\lo) = ——— (5.10)
m(a%0? +\?)

scaled on o (Jeffreys takes @ = 1, A\, = 0, but we define the problem thus to bring out
some points noted in Sec. 1). To analyze the import of the data, Jeffreys then calculates
the likelihood ratio
D|H,
POIHD {o LOw,0)do/a (5.11)
p(D|HY

KAx,s) =
while Laplace (if he used the same prior) would calculate instead the probability of a
positive effect, given H;:
(o] oo
Pu(x,s) = pOA>\,|D,Hy) = M1 {5y d\ [ ydo ot 7(\|0)L(A,0) (5.12)
These expressions have a common denominator M, equal to the integral in (5.12) with

)\" = -00.
It is straightforward but lengthy to verify that Jeffreys and Laplace do not ask
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exactly the same question; i.e., J = d(K,,P.)/3(x,s) # 0. However, they are not very
different, as we see on making the same approximation (large n) that Jeffreys makes.
Doing the o-integration in (5.12) approximately, the other integrals may be done
exactly, leading to the approximate form

K, = [1(n-1)/2]"2 a1 + g®/Q"(\) (5.13)

where g = (x/as). This reduces to Jeffreys’ result [Zellner’s Eq. (2.7) in this volume]
when a = 1, A, = 0. In the same approximation, Laplace’s result is the tail area of a ¢-
distribution with n-2 degrees of freedom:

oo
P, = A, | av/Qrioy (5.14)

where A, is a normalization constant. Of course, if Laplace used a uniform prior for \,
he would find instead the usual ‘‘Student’’ result with (n-1) degrees of freedom.

In the limit of an improper prior (a— ), K, diverges as noted in Sec. 1, the
original motivation for both the Jeffreys and Bernardo tamperings; but the arbitrary
parameter a cancels out entirely from Laplace’s leading term, appearing only in higher
terms of relative order n-1.

Had we been estimating X instead, we should find the result (\),..=\" % 6\, where
N = x, 8\ = s/ /n. But Laplace’s result (5.14) is a function only of the statistic t = (\".
N)/6N, and Jeffreys’ (5.13) is too for all practical purposes (exactly so if A, =0, as
Jeffreys assumes). Therefore, while considering ¢ unknown has considerably
complicated the mathematics, it does not lead to any real difference in the conclusions.
Again, Laplace’s test yields the same information as that of Jeffreys, and in addition
tells us the sign of (A-A,). In all cases -Jeffreys, Bernardo, Laplace, and the modern
physicist’s test- the condition that the data indicate the existence of a real effect is that
iti>>1.

6. Where does this leave Q,?

In summary it should not, in my view, be considered ‘‘wrong”’ to ask the original
question Q; = ‘‘What is the relative status of H, and H, in the light of the data?’’ But
the correct answer to that question depends crucially on the prior range of A according
to H,; and so the question appears in the retrospect awkward.

Now the original motivation for asking Q,, stated very explicitly by Jeffreys, was
to provide a probabilistic justification for the process of induction in science, whereby
sharply defined laws are accepted as universally valid. But as both Jeffreys and
Bernardo note, H, can never attain a positive posterior probability unless it is given
some to start with; hence that ‘‘pump-priming’’ lump of prior probability on a single
point A =0. It seems usually assumed that this step is the cause of the difficulty.

However, the question Q, is awkward in another, and I think more basic, respect.
The experiment cannot distinguish differences in \ smaller than its ‘‘resolving power”’
dh=s/vn. Yet Q, asks for a decision between H, and H; even when |\-\,| <6\. On the
other hand, the experiment is easily capable of telling us whether \ is probably greater
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or less than A\, (Laplace’s question), but Q, does not ask this. In short, O, asks for
something which the experiment is fundamentally incapable of giving; and fails to ask
for something that the experiment can give.

[Incidentally, a “‘reference prior’” based on the Fisher information i(\) is basically
a description of this resolving power 6\ of the experiment. That is, the reference prior
could be defined equally well as the one which assigns equal probabilities to the
“‘equally distinguishable”’ subregions of the parameter space, of size 6X. This property
is quite distinct from that of being ‘‘uninformative’’, although they happen to coincide
in the case of single location and scale parametersj.

But what we noted in Sec. 4 above suggests a different view of this. Why does
induction need a probabilistic justification if it has already a more compelling
pragmatic one? It is for the departures from the previous line of induction (i.e.,
switching to H,) that we need -and Laplace gave- a probabilistic justification. Bernardo
seems to have sensed this also, in being content with the fact that his p(H,|D) tends
only to 1/2 when H, is true. Once we see that maintenance of the status quo requires no
probabilistic justification, the original reason for asking Q, disappears.

7. Conclusion

What both the Jeffreys and Bernardo tamperings achieved is that they managed to
extricate themselves from an awkward start and, in the end, succeeded in extracting the
same information from the data (but for the sign of A-\,) that Laplace’s question Q, =
““What is the probability that there is a real, positive effect?’’ elicited much more easily.
What, then, was that elusive question Q,? It was not identical with Q,, and perhaps
does not need to be stated explicitly at all; but in Cox’s terminology we may take Q, as
any implicate of Laplace’s question whose answer is a strict monotonic function of |t|.

We have seen how the answers to seemingly very different questions may in fact
convey the same information. Laplace’s original test elicits all the information that can
be read off from Jeffreys’ K/x,s) or Bernardo’s Ky(x). And for all purposes that are
useful in real problems, Laplace’s P, may in turn be replaced by the A\’ and 6\ of a pure
estimation problem. Because of this, [ suggest that the distinction between significance
testing and estimation is artificial and of doubtful value in statistics-indeed, negative
value if it leads to needless duplication of effort in the belief that one is solving two
different problems.

D.J. SPIEGELHALTER (University of Nottingham):

The papers by Professors Zellner and Siow and Bernardo both suggest reference or
‘non-informative’ priors for use in Bayes factors, but they produce fundamentally
different results. I shall begin by comparing these results, and then discuss the
individual merits of the two proposals.

Consider the simple case x~N(u,0%/n), H,:;u=pu,, Hyp#p.. Let y.=~/n(x-p,)/c in
the notation of Bernardo, who suggests a Bayes factor (17) in favour of the null of
expi{-(y%1)/2}, which has behavior similar to that of a significance test. In the case of
unknown variance, Zellner proposes the Jeffreys form (2.7) which for n fairly large is
approximately equal to (wn/2)*2 exp(-y%/2). For large n, values of vy, which would lead
Bernardo to just reject H,, would suggest accepting H, to Zellner.
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This is the Lindley paradox, and investigators of Bayes factors have been divided
in their support for this phenomenon. Pro-paradox are Zellner (1971), Lindley (1961),
Jeffreys (1961), Dickey (e.g. 1971) and Schwarz (1978), while anti-paradox are Akaike
(1978), Atkinson (1978), Box and Kanemasu (1973) for ‘post data’ Bayes factors, and
presumably we should include all users of significance tests. Professor Bernardo
suggests that a significance test procedure is appropriate in checking a scientific theory.
I would be grateful to both authors for some comments on the appropriate practical
situations for these two approaches.

The paradox will cause Professor Zellner’s Bayes factor wrongly to accept H,, if
the likelihood is concentrated around the true parameter value lying 0(n-1/2) from H,. A
Bayesian with a true prior under H,; would, however, consider this event a priori
extremely unlikely to occur for large n. Moreover, even if this erroneous chaice of H,
did occur, for predictive purposes at least, the error is irrelevant since the true model is
only a negligible distance from the null. These arguments for the practical use of ‘pro-
paradox’’ Bayes factors are formalised in Smith and Spiegeihalter (1980).

It remains to examine whether the proposals of Zeliner and Bernardo are
appropriate chdices of non-informative prior, within their respective schools of
thought on Bayes factors.

Professor Zellner’s paper

It has been said at this meeting that ‘everything is in Jeffreys’. Perhaps this is an
exaggeration, but this paper gives the impression that this work would have been in
Jeffreys, if only Jeffreys had got round to extending his work to linear models. I trust
the authors will take this comment as a compliment of their work, as it is intended.

I have, however, some reservations about the presence of the XTX matrix in the
prior specification (3.7b). Changing a prior according to the sampling design would
seem somewhat strange. Consider the example of one-way analysis of variance, in
which there are I groups with size n,, ...n,, and let N=Xn, The null hypothesis is of

equal group means H,:p, = ... =, = p against a general alternative. Then (3.12) provides
the Bayes factor.
. -1/2
KO] — \/7[' T\ (I_RZ)-(N-I—I)IZ
ras2) \ 2

Consider a prior that does not depend on the sampling design. Considerations of
invariance suggest p(u|o,H,)xo',p(u|0,H)xo! and p(o)x o ! as non-informative
priors, which lead to a Bayes factor

By, = C(IIn./N)V}(1-R?) V2

where C, is some constant of proportionality to be specified. We may adopt the ‘device
of imaginary results’ (Good, 1950) to suggest a plausible value for C,. Say we observe
R?=0 (eq1al group sample means), then we would presumably expect By, =1 which
implies C?:- N/TlIn,. A lower bound is given when n,=2,n,=1, i=2,...1, leading to C?
> (I+1)/2. Assuming this lower bound for illustrative purposes provides a Bayes
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factor
By, = [(I+ 1)ITn,/2N)V%(1-R2)-V/2

To compare the behavior of Ky and By, let I = 5, ny=n,n,=...=ns;=m. Then

Koy = 1/3 (N-5)%(1-R?)" N-6)/2
By = m?3V%(n/(n+ 4m}/(1-R?)"2

If the design is unbalanced, n being large compared with m, then Ky, will favour A,
much more than the Bayes factor based on a prior that does not depend on the
sampling design. This dependence would appear to be quite important and, as
previously mentioned, rather alien to the usual methods of prior specification,

Professor Bernardo’s paper

I should first congratulate Professor Bernardo for an ingenious extension of his
theory of reference priors to the area of Bayes factors. However, I find the definition
(6) of missing information a little forced. If # has a mixed prior, denoted p’(8), should
we not seek to maximise 1%{e,p ' (6)} with respect to p?

By changing p with #, the author wishes to avoid the situation described by
equation (13), in which one accepts H, as the spread of the prior under the alternative
increases. If this prior actually expressed one’s beliefs, this behaviour seems quite
reasonable. So the objection arises from an inappropriate use of a locally uniform
prior, whose ordinate at the likelihood is allowed to go to zero. The problem becomes
that of choosing an appropriate ordinate for a locally uniform distribution.

Professor Bernardo’s wish to avoid the Lindley paradox would seem appropriate
in two contexts at least; when there was a large loss on false rejec'lion of the null, even
though the alternative is very close, or when we have strong belief a priori in
alternatives close to the null. If the latter is true, then this should bé modelled in our
prior. It can be shown (Smith and Spiegelhalter, 1980) that if the prior shrinks around
the null at the same rate as the likelihood concentrates, then one obtains a Bayes factor
By, which approximately satisfied

-2log, By = M-(3/2)(py-P.)

where p, is the number of parameters in H;, \ is the standard likelihood ratio statistic,
and Ax2,_,, under H,. The multiplier 3/2 compares with the use of 2 by Akaike (1978),
1 by Box and Kanemasu (1973), and log.(n-p,) by Professor Zellner in expression
(3.24).

The example discussed by the author is equivalent to using a multiplier of 1. I am
not sure whether the information theoretic argument is to be extended to the general
linear model. If so, one should note that the use of a multiplier 1 may lead to a rather
strong preference for complex models, since in this case E[-2 log.By] =0 and so the
probability that the Bayes factor prefers H,, given H, is true, is approximately .5
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whatever the complexity of the alternative. [ suggest a slightly larger multiplier is more
appropriate.

H. AKAIKE (Institute of Statistical Mathemuatics, Tokvo):

We are often told that the Bayesian approach is developed for cach particular set
of data. This means that the sample sizc is always equal to 1. 1 see #'s, the sample sizes,
in both Professor Zellner's and Professor Bernardo’s papers. Any aspects within these
papers which essentially depend on 7 may not then be particularly Bayesian.

In the example of Section 1 of Professor Bernardo's paper, we thus assume 7= 1.
This reduces the problem to the choice of p=piH.} in relation 10 the size of of, the
variance of the prior distribution of the mcan p. For simplicity we assume jo, =4 =0
and get p(x -H)=Nkx 0,6%) and p(x H)=Nx 0, ¢°+0%). To keep ihe predictive
distribution p(x) = pN(x 0,6%) + (1-p)N(x 0,0% + o) impartial 1o botti p(v F1) and
plx H) in terms of entropy, we have to assume (p(yv H)log@x) piy H ))dx
= \p(x. Hy) log(p(x)/plx Hy)) dyv. When ¢§ — oo this will hold only with p - 0.5, lor
this choice of p = 0.5, the critical value of x where the posterior probabituy of
attains 0.5 is almost equal 1o 20 for o, =80 and increases to o for o, = 1000, This scems
to suggest that ordinary choice of significance level such as 5% or 1% s fairly
rcasonable. The fixed choice of the level may turther be gquestioned. But it is now
obvious that the ratio o,/v controls the choice.

A.P. DEMPSTER (Harvard University):

Both papers are concerned with Bayesian tests of significance. A standard
parametric specification depending on parameters (0,¢) is assumed, and the null
hypothesis is that 0 takes a prespecified ‘‘sharp null’’ value 6, while ¢ is unconstrained.
Both papers start from the ‘“‘paradox’’ of Lindley (1957) who shows that Bayesian
testing and tail area testing produce very different judgments when a diffuse prior
distribution is assigned to 0 given the alternative hypothesis. As sample sizes increase,
the diffuse prior implies that the data tend to add much more credence to the null
hypothesis relative to standard tail area tests. Both papers develop alternatives to
diffuse priors which bring the Bayesian results into relatively close conformity with tail
area results. The papers are worthy contributions to theoretical statistics, but in my
view irrelevant to statistical practice.

What is probability? Probability does not fall into distinct categories such as
subjective, logical, and physical. Any probability model worth using to assess real
world uncertainty must command belief, must result from a chain of reasoning, and
must nof be in clear conflict with known empirical facts. Bernardo appeals to an
information-theoretic principle to derive a prior distribution, while Zellner and Siow
appeal to plausible postulates originating with Jeffreys. The reasoning behind these
derivations is interesting, but there is no way I can commit belief to the resulting prior
distributions, since my prior would then depend on the accident of sample size. Also,
there is an empirical ‘“how does it work’ component to each paper consisting of
comparisoi s with tail area results, and suggesting that the disparity between the
Bayesian techniques and standard non-Bayesian practice is rather mild. But, since tail
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area tests are not supposed to be Bayesian, the mildness of the disparity is a logical
curlosity rather than evidence that the Bayesian models are credible.

What are significance tests for? The procedures called Bayesian significance
testing and tail-area significance testing answer logically different questions, so that the
use of the term significance testing for both creates semantic confusion reather than
substantive controvery.

In connection with his parable of King Hiero’s crown, Savage (1962, pp, 29-33)
clearly illustrated the need for Bayesian procedures which provide rational choices
between sharp null hypothesis and higher dimensional alternatives. I agree with the
Bayesian position which says that the advocates of Neyman-Pearson testing theory are
in error when they seek to apply their theory to operational decision-making, as in
Pearson (1962). The Neyman-Pearson theory makes probabilistic sense only as a theory
about tail area tests, and is at that an inadequate theory because if fails to come to grips
with the mysteries of conditional testing.

The positive aspect of tail-area tests is that they address real questions which come
up in the process of developing a formal model to be used either for purposes of
scientific insight or operational decision-making. Specifically, they provide one way to
ask whether a nominated model appears to conform to the outside world of fact. Tail-
area tests ought to be indispensable to Bayesian statisticians wishing to avoid criticism
of their models from two directions. Tail area tests which reject can provide signals
that modellers, including Bayesians who have already had their prior model elicited,
should go back to the drawing board, because the test shows that the data are trying to
say something about phenomena not yet captured in the elicited model. In this case,
introspection is not enough, an a further look at the real world may be advisable. Tail
area tests which accept can serve to point to possible eventualities whose prior
probabilities are influenced only minimally by the data, while these same probabilities
may exert a serious influence on later Bayesian conclusions or decisions. In this case,
introspection may be all there is, and should be given extra effort. For example, I may
not have enough data to detect a significant relation between a chemical agent and a
human cancer, but once having raised the question I will not lightly brush off the need
to put numbers on prior probabilities of small effects.

In summary, Bayesian statisticians who reject tail area testing are correct when
they attack its misuse for decision-making, but are in danger of missing the benefits of
correct use in their zeal for things Bayesian. ‘‘Significance testing’’ should be excised
from Bayesians have enough good things to do without invading neighboring territory.

What does it mean to ‘‘test against an alternative hypothesis’’? George Barnard
argued at the conference, and I supported him, that significance tests can be valid and
important when only the null hypothesis is formulated, as in the Daniel Bernouilli
example. Fisher rejected the Neyman-Pearson theory which stressed alternative
hypotheses because the theory was couched in terms of long run frequencies, whereas
in his mind, as in Daniel Bernouilli’s, the purpose of significance testing was to
interpret a particular data set. Fisher did not use the formal term alternative
hypotheses, but he could scarcely have rejected the concept since the very word ““null”’
suggests that significance testing is a backward way to get at alternative hypotheses.

When a significance test gets to be repeatedly used, appears in ‘‘how to do it”’
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books, and becomes distorted by the term ‘‘procedure’’, then there generally is a
reasonably well defined set of alternative hypotheses which are substituted for the null
hypothesis when the test produces a significant outcome. It is then sensible, I believe, to
use the term ‘‘testing a null hypothesis against an alternative hypothesis’’. I believe also
that tail area testing is a clumsy mechanism for the purpose. But I have rejected
Bayesian ‘‘significance testing’’ as the answer, so what is left?

The obvious answer in the case of simple null and simple alternative hypotheses is
to look ar the likelihood ratio in favor of the alternative. If the ratio is 99 to 1 then the
null hypothesis can be “‘rejected’’ with similar logic to rejection based on a tail area of
.01. When the hypotheses are not simple, my suggestion (1973) is to use the posterior
distribution of the likelihood ratio, i.e., the posterior distribution which my Bayesian
self would use if 1 adopted the alternative hypothesis, and to reject the null hypothesis
if I am reasonably sure, say 60% sure, that the likelihood ratio is at least 99 to 1. This
approach produces judgments similar to tail area tests, and so produces practical
answers in the same general range as those of Bernardo and of Zellner and Siow.

These papers resolve the Lindley paradox by producing Bayesian procedures
where the paradox largely goes away. 1 prefer to say there never was a paradox largely
because the procedures Lindley contrasts were not comparable in the first place. My
work (1973) exhibits alternatives to tail area testing which area genuine significance
tests, but are likelihood based. They do not require the contrived priors of Bernardo or
Zellner and Siow, but do have a Bayesian element which is relatively insensitive to the
choice of prior.

J.M. DICKEY (University College Wales Aberystwyth):

Professor Zellner in his paper seems to remain true to Jeffreys’ conception when
extending Jeffreys’ Bayes factors to the general linear model. I should like to point out
some disagreeable aspects of the method in Jeffreys’ simple context, which extend to
the general context. Denote the unknown mean and variance for a simple normal
sample, y,...,¥., by u and o%. One desires to compare the two models,

H:p=0, versus H :u # 0
As usual, familiar magic words like ‘‘knowing little’” are used to introduce a
particular prior distribution as being worth one’s special attention. The idea seems to be
to produce an automatic procedure which will be universally accepted. Under H¢, the
joint density proposed is
Plu,o| H) = {flu/o)/a}{K/a} )
where

S = tr(1+ )it

(I have introduced a multiplicative constant K here and written an approximate
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equality, relative to the likelihood function, in the sense of Savage’s ‘‘precise
measurement’’).

I assume that the first bracketed factor in (1) represents the conditional prior
information concerning p given o,

pulo,H) = tm(1+ 42/ 0?) /o o)

(One could argue that my assumption is unwarranted. But an alternative factorization
would need to be given, rather than mere magic words). Thus, the second factor would
be the marginal prior density for ¢ under H¢.

plo|HY) =.K/o 3)

My first complaint is that the integrable conditional density (2) is very special. 1
have heard it said that the choice of scale 1.0 is made ‘‘for convenience’’. But why not
100 ¢ ““for convenience’’, or (.001)o, or (11,682.49) o? Clearly, the choice should
depend on the actual opinion in each application. Should one act against one’s opinions
and, instead, report a Bayes factor that represents no person’s coherent change of
opinion?

One may find it difficult thus to specify ones conditional opinion concerning the
location conditional on the unknown scale. But what about the marginal opinion
concerning x under H? Working directly from the joint density (1), we obtain

piHY) = |5 p(u,0| H)do @)
= K | fw/0)/ o do
=K/ |ul.

Again, for my second complaint, this is a very special form and may fail to
approximate well ones actual prior opinion concerning x undr /-, even locally relative
to the likelihood function, even with the constant K open to choice.

Under the hypothesis H, the corresponding prior density which was proposed for ¢

plo| H) = k/o 5)
This constrasts with the conditional density obtained from (1) and (4),

plo|p,H) = plu,o| H) / p(u| H)
= |y.'ﬂ;t/0)/02, (6)

which has the asymptotic form near H,

lim plo|p,H) < o2 )
w—0

Note, however, that for the new variable 5 = p/0,n and ¢ are prior independent
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under H* according to (2), and hence for any value of 5,
ploinH) = K/o . ®)

In particular, (5) and (8) agree for y = 0, thereby satisfying Savage’s condition
continuity. (See my discussion to the paper by Professor Smith in these Proceedings).
Note that any other point hypothesis, p = p,, could not be reexpressed in terms of a
point hypothesis on », since x = u, means n = p,/0.

In my paper in press, Dickey (1978), convenient Bayes factors are provided for the
normal linear model together with operational methods for use in cases where the
likelihood function is more informative than the prior densities. I also treat intersecting
hypotheses, as well as nested and unrelated hypotheses.

S. GEISSER(University of Minnesota):

In most statistical problems in which one is dealing with a linear regression, the
regression arises not from some ‘‘true’’ physical process but largely from a
combination of convenience and an adequate fit of the data in hand. The reasons are
twofold , first the so-called ‘‘true’’ process governing the data is often very complex
and unknown. Secondly, the interest in the data emanates from a need to predict new
values rather than to select a ‘“‘true’’ physical model. With this view in mind, W. Eddy
and I (1979) devised a selection scheme (useful for a variety of situations including
linear regression) which is geared to prediction and derives from a Bayes-Non-Bayes
methodological compromise. One of its properties, which superficially appears to be
unfavorable, is that asymptotically with non-zero probability it can choose a ‘‘wrong”’
higher dimensional model as opposed to a ‘‘true’’ lower dimensional model. However,
it turns out that it is approximately equivalent to a Bayesian procedure with penalties
(costs or prior weights) that depend on the sample size and the kind of selection error
incurred. What this implies is that even if one chooses the higher dimensional model
when the lower one is ‘‘true’’, asymptotically there is no loss incurred for predictive
purposes. 1 believe that such procedures are more useful for most problems that occur
in statistics than those that are geared only to selecting the true model, because of
primary interest in prediction and the fact that our net hasn’t really been cast over the
““true’’ alternative.

1.J. GOOD (Virginia Polytechnic and State University):

In accordance with a theorem of Abraham Wald, a minimax procedure
corresponds to a Bayesian procedure with the ‘least favorable’’ prior. I pointed out in
Good (1969) that if expected weight of evidence is taken as the utility (or quasi-utility)
measure, then Wald’s theorem leads to the Jeffreys invariant prior. (I believe this is
equivalent to what Dr. Bernardo describes in terms of maximizing the missing
information). It gives an explanation of why the reference prior is invariant with
respect to mere changes of notation, and also explains why it cannot be entirely
satisfactor,: because minimax methods never are entirely satisfactory except possibly
against an intelligent opponent. Nature is neither intelligent, nor an opponent,
although life is a losing game.
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Regarding ‘‘Good’s paradox’’, see my contribution to the discussion of Dr.
Zellner’s paper.

Dr. Bernardo’s Table 1, relating tail-area probabilities to Bayes factors, is
remarkably consistent with my rough-and-ready rule that a Bayes factor usually lies
between 1/(30P) and 3/(10P) (Good, 1957, p. 863). But, in various applications this
formula can be improved; for example, Good and Crook (1974, p. 715), where N/2
comes into the formula.

D.V. LINDLEY (University College London):

These two papers bother me. They are extremely thoughtful papers, rich with
ideas, yet they fail to adhere to de Finetti’s aphorism, ‘‘Think about things’’. If we
have a practical problem of data analysis, the quantities have a physical meaning and
the scientist knows something about them. He should therefore be encouraged to think
about them, or the parameters, and not adopt probability distributions that merely
conform to some patterns of ignorance or some formal model. What does he know
about 87 Is it really Cauchy? I do not wish to denigrate these papers, for they both help
us enormously to understand the way probabilities behave, and are particularly well-
written. But, as this conference comes to an end, it does appear to me that we have
discussed technicalities too much and that we should balance this necessary activity
with some thinking about the real world, not Greek letters.

A. O’'HAGAN (University of Warwick):

Would Professor Bernardo please explain why he chooses the particular limiting
process he used in section 2 to obtain equation (11)? If we simply let 6,2 — o in (9),
holding all other quantities fixed, we will obtain posterior odds

m(H,| D)

—exp(1/2+))
7I’(HoiD) :

Equation (11) is a consequence of holding v, fixed, so that , increases with ¢,. In
the next section he uses yet another limiting process to reach equation (17). All three
limiting processes end with a uniform prior on (-o0,). All three posterior odds
expressions have the same qualitative large-sample behaviour that Professor Bernardo
likes. Yet they will give numerically quite different posterior inferences in practice.
How are we to choose between them?

A. ZELLNER (University of Chicago):

At the 1976 Fontainebleau Conference on Bayesian Methods, 1 pointed out that
Bernardo’s procedure for generating prior distributions makes the form of the prior
dependent on the likelihood function’s form, that is on the design of the experiment.
This point, apparently unrecognized by Bernardo, was particularly disturbing to
Bernardo and Lindley. In Lindley’s discussion of Harold Jeffreys’s presentation at the
Econometric Society’s World Congress meeting in 1970, he termed such a dependence
to be incoherent. Jeffreys’s, Box and Tiao’s and my procedures for generating priors
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also involve a dependence of a prior’s form on the form of the likelihood about which I
wrote, Zellner (1977, p. 231) “‘Since the purpose of a MDIP [maximal data information
prior] is to allow the information provided by an experiment to be featured [in the
posterior distribution], it seems natural that this form of a MDIP pdf that accomplishes
this objective be dependent on the design of an experiment’’. It would be interesting to
learn about Bernardo’s and Lindley’s current position on this issue.

While 1 do not enjoy raising disturbing points, it should be pointed out that
Bernardo’s odds ratio in equation (17), w(H,;|D)/x(Hy|D) = exp {1/2(73—1)}, where
ve=/n(x-o)/c has a fixed (independent of n) lower bound of e /2 =0.606. This
appears unsatisfactory and is not a characteristic of, for example, Jeffreys’s posterior
odds ratio for the normal mean problem.

REPLY TO THE DISCUSSION

A. ZELLNER (University of Chicago):

One main objective of Jeffreys's and our work is to provide a coherent framework
within which it is possible to rationalize and criticize empirical practice in comparing
and choosing between or among hypotheses, for example in the normal mean case, A =
0 and A # 0. In this case Jeffreys (1979) states that *‘...astronomers had a rough rule
that discrepancies up to 20 were likely to disappear with more information, and those
beyond x2. I was glad to find that these [results] were usually about what my
significance tests gave. At least they showed that the rough rule corresponded fairly
well to a connected theory”’. Also, see Jeffreys (1967, p. 273) for another statement of
this rough rule, a form of which Jaynes cites approvingly in his comments. Producing a
“‘connected theory’” to rationalize sensible rules and to criticize absurd rules for
significance testing is one of Jeffreys’s and our main objectives which we deem
important and intimately related to “‘real world’’ significance testing problems, a point
which Lindley fails to appreciate in his comments. That significance testing procedures
(and other statistical procedures) in physics, astronomy, economics and other sciences
are in need of improvement is apparent to many statisticians.

As regards sharp null hypotheses, for which Dempster and Savage, among others
see a need and significance tests, Jeffreys (1963) writes, ‘‘Every quantitative law in
physics implies a series of significance tests that have rejected numerous possible
modifications of the law”’ (p. 409). Similarly in biology, economics and other sciences,
significance testing involving sharp null hypotheses plays an important role. Thus,
Good’s suggestion to ‘“‘roll together significance testing and estimation into a single
process’’ is misguided in our opinion and contradicts Jeffreys’s, Dempster’s, Savage’s
and other’s stated ‘‘need for Bayesian procedures which provide rational choices
between sharp null hyyotheses and higher dimensional alternatives,”’ as Dempster puts
it in his comments.

On Jeffreys’s and our use of particular Cauchy priors upon which most of our
discussant: have commented, some of them have apparently missed the point that one
of the reascns for their use is that posterior odds ratios based on them rationalize the
rough rules used by physicists, astronomers and others in testing. They can represent
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prior views in a number of cases and serve as a useful reference prior in others. As
Jaynes notes, their use has ‘‘the admitted virtue of yielding resuits that seem
reasonable’’. Thus, in response to Akaike’s thoughtful comment, their use leads to
Bayesian results which are applicable to many sets of data --a general objective of
theorizing in many areas including statistics. Further, as Jeffreys (1967, p. 272) and we
stated on the first page of our paper, more informative and/or different priors can, and
should be employed if the particular Cauchy priors are deemed inadequate to represent
the available prior information. However, we believe that the Cauchy priors which we
employed will be found useful in many applications and do serve as a basis to
rationalize and criticize much current practice. For example, in our framework p-values
are given an interpretation and the implications of a choice of usual critical values for a
test statistic can be appraised. In addition, Jeffreys (1967, p. 275) points out that the
value of the invariant (divergence) measure,

dP
J = {log — d(P-P)
dP

for the normal mean problem where P refers to the normal distribution with A\ = 0 and
0 < 0 < oo and P’ to the normal distribution with A # 0and 0 < ¢ < o is J = A\%/0?.
He notes that taking a uniform prior on ¢ = arc tan (\/0), - 7/2 < 8 < =/2 yields
exactly the particular Cauchy prior for A/¢ which he employs in the normal mean
problem.

We now turn to Jaynes’s comments. First, we find no ‘“‘technical problems”
caused by putting a “‘lump of prior probability on a single point A = 0’’. Second, on
the question, “Why should our prior knowledge or ignorance, of A\ depend on the
question we are asking about it?”’, Jaynes does not recognize that often when a
hypothesis A = 0 has been suggested, the value 0 is viewed differently from other
possible values. Call this prior information [, If the value A\ = 0 is not viewed
differently from other values, call this prior information /,. Then for these frequently
encountered circumstances there is good reason for the prior distributions pg(\ | Ig) and
p{\ 1) to be different, a fact appreciated by many including Lindley (1963, p. 58 ff.) in
his work on testing procedures when prior information is of type /,.

With respect to the new work of Cox on the logic of questions, we have some
doubts about the adequacy of the entropy concept to judge the value of questions. Be
that as it may, in our recent work, Zellner and Siow (1979) on the normal mean
problem with ¢’s value unknown, we consider three hypotheses, Hy;: A = 0. Hy: A >0
and H;: N < 0, with prior probabilities 7, = 1/2, 7; = 73 = 1/4 and Cauchy priors
such as used in our past work, defined over half line A > 0 for H,and A < 0 for H;. The
approximate posterior odds ratios are:

Ky = g(t,w)/K(t), K3 = g(t,v)/F(-t) and K,3; = F (¢)/F(-t) where t = n'/2 y/s,
gty = (mv/2)V2/(1 +3/v) »"V2, which is Jeffreys’s odds ratio given in (2.7) of our
paper under discussion and F (<) is the cumulative normal distribution function. It is
then the case that the posterior odas ratio for A = 0and A # 0 (the union of H, and H,)
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is just g(t,v), Jeffreys’s posterior odds ratio. Thus, as Jaynes ingeniously suggested,
consideration of two questions A = Ovs. A > 0and: = 0vs. A < 0 will yield Jeffreys’s
result under the special prior probabilities given above. However, the practical
differences are negligible in this case. Also, the expression for K,; above is very close to
the result yielded by what Jaynes calls the Laplacian approach. Therefore, when we
apply Jeffreys’s approach to the three hypotheses, it produces the Laplacian result K3,
as well as K,;, K3 and posterior distributions for parameters under all three
hypotheses. However, for one-sided alternatives in practice, it is often unreasonable to
assume that =, = m;. Our recent work indicates that taking =, = .5, 7, = .4and 7y =
.1 yields results close to non-Bayesian ‘‘one-tailed’’ testing results in terms of
indifference values of ¢ for this normal mean problem when the sample size is about 20.

On predictive distributions and testing, which Jaynes mentions, it is well known
that the posterior odds ratio with prior odds ratio equal to one is equal to a ratio of
predictive densities and thus a posterior odds ratio of about one indicates close
agreement of the predictive densities under the two hypotheses. Also, Jaynes’s
consideration of values of |#| in appraising hypotheses fails to take adequate account
of the role of sample size in evaluating hypotheses. Further, when |7| < < 1, the
important result is that the simpler model (e.g. A = 0) can be retained. This is
important since it is well known that use of models with redundant or unneeded
parameters results in inflation of the mean square error of prediction. Thus, in
disagreement with Jaynes, there is obviously something valuable to gain in switching to
a simpler model when warranted.

Jaynes remarks that Laplace got ‘‘clear-cut decisions from uniform priors”’.
Jeffreys’s (1967, p. 128 ff.) discussion of Broad’s application of Laplace’s rule of
succession is relevant. In this case, a uniform prior led to unsatisfactory results in a very
basic problem. Jeffreys (1967) comments that, ‘““We really had the simplest possible
significance test in our modification of Laplace’s theory of sampling, where we found
that to get results in accordance with ordinary thought we had to suppose an extra
fraction of the initial probability, independent of the size of the class, to be
concentrated in the extreme values’’. (p. 247). See also Geisser’s (1978) discussion of
this problem. Thus for Jeffreys to get sensible results, it was necessary to use ‘‘lumps of
probability’’ on extreme values. Finally, it is surprising to us that Jaynes and Good are
apparently in disagreement with Jeffreys and many other scientists and statisticians on
the need to distinguish significance testing and estimation.

Spiegelhalter aligns researchers with respect to Lindley’s ‘‘paradox’’. This appears
to us to be a mistake since there is little paradoxical about Lindley’s results. As the
sample size increases, good sampling theorists will adjust their significance level in an
obvious direction, as pointed out in Zellner (1971, p. 304, fn.) and hence no paradox.
Good Bayesians will be familiar with Jeffreys’s cogent reasons for and analysis of the
dependence of odds ratios on the sample size and again, no paradox. Further,
Spiegelhalter requests examples of the use of significance tests in checking scientific
thzories. The hypothesis of no effect, mentioned in our paper is encountered so
frequently that there is no need to publish a list of cases. Also, some theories, for
example Miilton Friedman’s theory of the consumption function predict that
parameters will assume particular values and they have been tested extensively in the
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literature, many times using inadequate testing methodology. For example, there is
much confusion about what significance level to employ when the sample size is large,
say about 5,000 as in survey data. With such large samples, empirical workers lament
that everything looks significantly different from zero at the 5 percent level. Many of
them know that they should not be using the 5 percent level but do not know how to
adjust it. Some resort to use of p-values which they find hard to interpret. A posterior
odds ratio approach provides a clear-cut solution to these problems given that the prior
assumptions employed are deemed satisfactory and other subject matter complications
are not present —see Jeffreys (1967, pp. 435-436).

With respect to Spiegelhalter’s point regarding accepting H, when the likelihood is
concentrated around the true parameter value lying 0(n1/2) from H,, we agree with him
that for large n “‘the error is irrelevant’’ and thus question his charge of ‘‘to wrongly
accept’’. Also, as many of our discussants and we noted, our prior distributions under
alternative hypotheses are informative, not uninformative as stated by Spiegelhalter.
They do, however have the property that if the sample evidence violently conflicts with
the null hypothesis, posterior distributions for the parameter or parameters under the
alternative hypothesis will be very close to what is obtained with a diffuse prior in
estimation, a dove-tailing of Jeffreys’s testing and estimation results.

On the dependence of our prior on the sample design, this is not unusual, It is also
a feature of the Jeffreys, Box-Tiao, Lindley-Bernardo, Zellner and some other priors.
Since information in designing an experiment may not be independent of information
about parameters’s values, such dependence is reasonable. Also, as Box mentioned at
this conference session, uniformative and informative are relative terms, relative to the
experiment being considered and thus a dependence between prior and design is not
unreasonable. In the case of our multivariate Cauchy prior, it can be interpreted as a
standard multivariate Cauchy distribution for standardized regression coefficients
much like usual beta coefficients. In the case of one independent variable in a
regression, the standardized regression coefficient is precisely the unitless quantity
s43/a, where s, is the sample standard deviation of the independent variable,
compatible with and a slight generalization of Jefreys’s use of \/¢ in the normal mean
problem.

In connection with Spiegelhalter’s means problem, since the null hypothesis is
equality of means, perhaps reflecting prior information that they may not be far
different, it is surprising to see that his prior under the alternative has the means
uniformly (over the entire real line?) and independently distributed. This prior implies
quite strongly that the means may have widely different values and could help to
explain Spiegelhalter’s problem. In any event, we did not analyze this problem in our
paper. For a sensible analysis of the hypothesis of equality of two means with unequal
numbers of observations on each, based on Cauchy priors under the alternative
hypothesis and with an application to real data, see Jeffreys (1967, p. 278 ff.).

On the issue of the multiplier for p, - p,, as Table 2.1 in our paper referring to the
case py - py = | shows, the multipiier 1n (n-1) behaves very reasonably for large n.
Also, on choice of models in relation to a loss structure, it is sometimes appropriate to
have the loss structure depend on n, as Geisser points out in his comments and this will
necessitate a broadened discussion of ‘‘the’’ appropriate multiplier.
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In his comments, Geisser describes a frequently encountered circumstance in
which investigators are empirically fitting relations with no laws and little or no subject
matter theory available. The importance of laws and subject matter theory in science
cannot be doubted. But what is one to do in the case described by Geisser? A “‘starting
point’’ suggested by Jeffreys and others is to consider all variation random until shown
otherwise. The hypothesis of ‘‘no effect’’ is thus central as for example in attempting to
use a variable to predict stock price changes or gold price changes or in testing a new
drug’s possible effect. An odds ratio approach seems very appropriate for important
_problems like these. As regards the Geisser-Eddy predictive scheme, that it provides
results that are approximately equivalent to a Bayesian procedure with ‘‘penalties (costs
or prior weights) that depend on the sample size and the kind of selection error
incurred” is very interesting. The afore-mentioned intimate relation of posterior odds
ratios and predictive densities, well known to Geisser helps to explain this result. In
small samples, however adding too many predictor variables can certainly be harmful
in prediction. As the sample size grows, there is a danger that because there is no secure
scientific basis for the relationship, it may not be stable. Thus we are back to the
desirability of using subject matter theory and laws. On the problem of selecting
variables in regression, we have applied the analysis in our paper to the Hald data, also
analyzed in the cited Geisser-Eddy paper. We obtained an ordering of models not far
different from that of Geisser and Eddy and that based on the residual mean square
error criterion. Our results include posterior probabilities for each of the 15 possible
models and associated odd ratios. As mentioned at the end of our paper, posterior
probabilities have a clear-cut interpretation and can be used to average predictions
from alternative models, which may be useful in certain cases and can rationalize ad
hoc schemes for combining forecasts from alternative models which have appeared in
the literature.

With respect to Dickey’s remarks, we are at a loss to understand his emphasis on
““magic words’’ and on ‘‘automatic procedures which will be universally accepted’ in
view of our statements regarding prior distributions made on the first page of our
paper. Above, we have explained the rationale for the use of our particular Cauchy
priors and thus no further comment is needed. Since Jeffreys and we parametrized the
normal mean problem in terms of 4 = u/0 and o (in Dickey’s notation), his equation
(8) is relevant and indicates no conlfict between the priors for o under the null and
alternative hypotheses. With respect to other point hypotheses, e.g. p = p,, at the end
of our paper we suggested implicitly that it is possible to write, H;: w, = ¢, and H,: w;
= N +e¢,, where w; = y,-uy and to proceed to compute the posterior odds ratio for A = 0
vs. N # Q,using Jeffreys’s results without difficulty.

Dempster rejects the use of mechanical tail area testing procedures as we do too.
He suggests the use of likelihood ratios. For two simple hypotheses, it is well known
that the Bayes factor is equal to the likelihood ratio, while for non-simple hypotheses it
is equal to a ratio of averaged likelihood functions. Dempster suggests use of the
posterior distribution of the likelihood ratio in testing without providing a clear-cut
rationale for his procedure. Is the posterior distribution of the likelihood ratio more
fundamenta ly linked to relative degrees of confidence in competing hypotheses than is
the posterior odds ratio? We believe that it is not even though we find the posterior
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distribution of the likelihood ratio interesting.

We agree with Good that his ‘‘Device of Imaginary Results’’ is very important. As
we noted, Jeffreys used it, without naming it, in the normal mean problem (and many
others) to deduce surprising results associated with the possible use of a normal prior
for A. On ‘“Good’s Paradox’’, it is our opinion that it is reflected in Jeffreys’s (1967, p.
255) work.

In closing, we thank the discussants for their comments and hope that our
responses help to provide a better understanding of the issues which they have raised.

J.M. BERNARDO (Universidad de Valencia):

I am most grateful to all discussants for their thought provoking comments. In the
following I shall try to answer their queries.

1 certainly agree with Professor Jaynes in considering the determination of
reference priors a top priority research problem of Bayesian Statistics, and I am
obviously flattered that a physicist with a through understanding of statistics finds my
result ‘a beautifully neat expression with a clear ring of truth to it’. I object however to
his description of my derivation as ‘chopping away the prior probability of the nuil
until is reduced to what I consider reasonable’. Indeed this is a mathematical
consequence of the procedure; but this is obtained from a well defined general theory
on reference distributions which has been shown to work in very different situations. I
do not need to invent any ad hoc procedures, (like Jeffreys-Zellner-Siow do when they
arbitrarily choose a Cauchy prior), but 1 determine the prior which describes the
situation in which most remains to be learned from the experiment, and claim that this
is a sensible reference point for scientific inference.

This reference prior is not a description of the scientist’s beliefs, but a description
of the situation in which the experiment could conceivably provide more information
on the quantity of interest; no wonder that this might depend on the design of the
experiment.

Similarly, 1 do not think the procedure consists of a ‘mutilation of equations
originally designed to answer Q,, so as to force them to answer instead @,’. Indeed, one
must specify what it is considered to be the interesting question, i.e., the quantity of
interest in my own terminology. If 6 were the quantity of interest I would obtain a
reference posterior density (6| D) for 6. 1f the question of interest is whether § =0, or
not. I would obtain a reference posterior probability for H, : 6 =6,. 1 dealt with the first
question in Bernardo (1979b) and I have tried here to solve the second. R

I was very interested in the nearly one-to-one relationship (but for the sign of 9)
between my reference posterior probability and Laplace’s tail area. Indeed, I agree that
often the question of interest is whether # >80, or not; the corresponding refernce
posterior probability is provided in equation (2); see also Bernardo (1979b) in reply to
Dawid. However, 1 do not think that this is the only interesting question. 1 feel it is
often convenient in applied work to be able to give a probabilistic description of the
plausibility of a sharp null. Confidence levels do not have such an interpretation, but
reference posterior probabilities do.

Dr. Spiegelhalter wonders what are the appropriate practical situations in which I
would use this approach. We all know of those consulting situations in which you are
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specifically asked to help some people to perform some or other classical test. As a
matter of principle, I refuse to do such a thing, but often do not have the time to go on
a lengthy full Bayesian analysis. 1 would then give these people the reference posterior
probability of the hypothesis they wanted to test.

About Definition 6, I do not think it is a little forced; for it is a consequence of the
fact that, in the present context, the quantity of interest is not § but, say, ¢ =y(9)
defined as ¢ =y, if 6 =60, and ¥ =y, if § #8, and, thus, we want to maximize the missing
information about y, nof that about 4.

1 have not yet had time to extend these results to the general linear model. I would
very much like however to see the details of Smith & Spiegelhalter method applied to
the particular example I discuss. Informal discussion with Professor Smith suggests
that both results are numerically very close.

1 certainly agree with Professor Geisser that the question of interest is often
prediction. If this is the case, one could obtain the appropriate reference predictive
distribution: see Bernardo (1979b) in reply to D.J. Bartholomew; no need, 1 believe,
for Bayes-non Bayes compromises. 1 do not think however that prediction is the only
possible question of interest. As in the example given by Professor Jaynes, Science
often finds it convenient to work in terms of the statistical falsification of new ‘simple’
working hypothesis.

Professor Dempster finds it difficult to commit belief to a ‘‘prior’’ distribution
derived from an information-theoretic principle; we are not arguing however that one
should do so. Indeed, we only consider reference priors as technical tools to produce
posteriors which are as little affected as possible, in an information-theoretical sense,
by prior opinions. On the other hand, we believe that the mildness of the disparity
between those Bayesian techniques and some standard non-Bayesian practice is more
than a logical curiosity: indeed, some of those classical techniques have been
succesfully used in practice, and we would like to understand why, from a coherent,
unified viewpoint.

Professor Dempster recognizes the need for Bayesian procedures which provide
rational choices between sharp nulls and higher dimensional alternatives and its main
use as warning signals for modellers; he provides no argument however against the use
of reference posterior probabilities with such purpose.

It has been said in this Conference that everything is in Jeffreys. Maybe we have to
add ‘and/or in Good’. Indeed, I am flattered to discover that the numerical outcome of
my well-defined procedure is consistent with the rough and ready rule suggested by
Professor Good’s remarkable intuition.

I do pot think it is sensible to assume #=1 as Professor Akaike does. By so doing
he misses the main point of the discussion, namely the behaviour of the proposed
procedures as # increases. One may certainly take n=1 if one chooses to call x the
vector x = {xy,...,x,} but then, of course, his argument does not follow. Alternatively
one could study the result of using sequentially Akaike’s prior: I presume you end up
again with Lindley’s (or Good’s) paradox.

Professor Lindley is certainly right when he mentions the need to think about the
real world ii- order to assess proper prior distributions allowing a subjective Bayesian
analysis. I am convinced however that such an analysis is difficult to accept by the
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scientific community unless it is accompanied by some reference result, conditional
only to model and data, with which it could be compared. I have tried to provide such a
reference for standard problems of hypothesis testing.

Dr. O’Hagan wonders how would one choose among the different limiting
processes one can imagine in (9); I think this is bound to depend on the sort of
approximation one is interested in. For, (9) is an exact expression, which gives the
reference posterior probability of the null when p (u|Hy)) =N (1| p4,0%). The status of
equation (17) is however very different from that of (11); while (11) is obtained from an
approximation to the exact expression (9), valid under certain conditions, (17) is
another exact expression, which gives the reference posterior probability of the null
when no distributional assumptions under the alternative are made.

Professor Zellner mentions once more the dependence of the reference prior on
the form of the likelihood function, a feature which is common to most approaches to
the problem, including his own. I certainly agree with him on the inevitability of this
dependence. Professor Lindley’s position was recently made explicit in his contribution
to the discussion of Bernardo (1979b).

On Professor Zellner’s second point, I certainly do not regard as disturbing the
fact that w(H,| D) has an upper limit. Indeed, I agree with Professor Jaynes when he
questions the need for a probabilistic justification for the maintenance of the status
guo. The mathematical expression of the fact that, in the absence of evidence against
the null, the scientist does not reject H,, but he is nos prepared to swear it is true, is the
oscillation of w(H,| D) about 1/2, which we obtain under those conditions. [ find this
far more reasonable than to expect a convergence to one of w(Hy| D).
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