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SUMMARY
Bayesian posterior odds ratios for frequently encountered hypotheses about
parameters of the normal linear multiple regression model are derived and discussed. For
the particular prior distributions utilized, it is found that the posterior odds ratios can be
well approximated by functions that arc monotonic in usual sampling theory F statistics.
Some implications of this finding and the relation of our work to the pioneering work of
Jeffreys and others are considered. Tabulations of odds ratios are provided and discussed.
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1. INTRODUCTION

In this paper we derive posterior odds ratios for selected sharp hypotheses
which are frequently encountered in regression analysis!. Our approach
involves use of generalized forms of Jeffreys’s prior distributions that he
regards as appropriate when there is little previous information, that is ¢‘...in
the early stages of a subject...,”” Jeffreys (1967, p. 252). Of course if more
information is available, more informative prior distributions can of course
be employed as has been done by Dickey (1971, 1975, 1977), Leamer (1978),
Zellner (1971, p. 307 ff.) and others. Herein, we shall emphasize the situation
in which little is known and, as will be seen resulting posterior odds can be
expressed in terms of usual 7 or F statistics and degrees of freedom. Thus the

1. Sce Jaynes (1976) for valuable analyses of a number of important practical examples
illustrating the need for care in formulating relevant hypotheses and using appropriate
techniques in order to obtain sensible results.
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results to be presented provide a direct small-sample link between Bayesian
posterior odds ratios and non-Bayesian test statistics as in the previous work
of Jeffreys (1957, 1967, 1978), Lindley (1957) and others. Also, some large
sample connections between Bayesian posterior odds ratios and non-Bayesian
large sample test statistics are developed which are special cases of the general
results of Lindley (1961) and Schwarz (1978).

Several, including Thornber (1966), Geisel (1970), Geisel and Gaver
(1974), Leamer (1978), and Lempers (1971) have considered posterior odds
ratios for regression hypotheses when little information is available. Our
approach differs from those utilized in these works in that we employ prior
distributions different from those employed in these works.

Since our approach is an extension of that originally presented by
Jeffreys (1967, Ch.V.), we present a brief review of Jeffreys’s related results
in Section 2. In Section 3 posterior odds ratios for several important
regression hypotheses are derived. Section 4 presents some numerical
evaluations of the posterior odds ratios derived in Section 3 while a summary
of results and some concluding remarks are given in Section 5.

2. REVIEW OF JEFFREYS’S RESULTS

Jeffreys (1967, Ch.V) has derived posterior odds ratios for a number of
important testing problems in which little prior information is available and
the issue is whether a parameter’s value is equal to zero, a sharp null
hypothesis. A sharp null hypothesis of ‘‘no effect’’ is frequently encountered
and thus it is important to have an analysis of it. Jeffreys refers to such an
analysis as ‘‘significance testing’’ and contrasts it with an estimation approach
in which no special value of the parameter, for example zero is singled out for
special attention. Also, he (1967, p. 251) points out that his estimation prior
probability density function (pdf) for representing ‘‘knowing little’’, for
example a uniform prior pdf is inappropriate for a significance testing
situation in which little is known about a parameter’s value?.

To be specific, consider Jeffreys’s (1967, p. 268 ff.) analysis of the
normal mean problem,

P i=12.n @.1)

where the y’s are observations and the u.’s are unobserved errors assumed
independently drawn from a normal population with zero mean and standard

2. Inregression analysis when we delimit the number of regressors to be finite, we are obviously
using sharp null hypotheses about the values of the coefficients of omitted variables.
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deviation g, 0 < ¢ < oo which has an unknown value. The two hypotheses
which Jeffreys considers are:

H;:\ =0and H,:\ # 0. (2.2)
As regards prior pdf’s, under H, Jeffreys utilizes
p(o|Hy) x1/a 0<o< o (2.3)

Under H,, Jeffreys (1967, p. 268) remarks that, ‘“‘From consideration of
similarity it [the prior pdf for N\ under H,] must depend on ¢, since there, is
nothing in the problem except o to give a scale for \’’. His prior under H, is

)\)d}\do

p (\o)dNdo o f <_ (2.4)
g

g o

where {% f(\/0) d\/o = 1. Then with prior odds 1:1, the posterior odds ratio,
K,,is:
Joo 1 expl-n(y? + 62)/20%)do

Kyp= —— - 2.5)
[, {&°F(\/0) a2 expi-nf(\-y)? + 6%]/20%}dad\

where y = ¥u, y./nand no? = L7 (v-y)%.

From detailed consideration of (2.5) in the case n =1 in which no decision
regarding H, and H, can be made (K, = 1), Jeffreys finds ‘‘that the
consideration that one observation shall give an indecisive result is satisfied if
S(v) [with v = N/o] is any even function with integral 1.”” (p. 269). Further, the
condition that K,,=0 for n=2 when 0=0 and y#0 requires that the
denominator of (2.5) diverge. This will occur if and only if [§°f(v)v'-ldv
diverges (p.269). As Jeffreys notes, ‘‘the simplest function satisfying this
condition for n>1 and also satisfying (3) [|%, ffvidv = 1] is fiv) =
1/7(1 4+ v?).”” Thus his form for fi\/0) is

= S0 <A< ™ (2.6)

()\)d)\ 1 1 d\
T 1+N/o%? o

[ o
a pdf in the univariate Cauchy form centered at zero. With respect to this
point, Jeffreys (1967, p.251) states, ‘‘We must... say that the mere fact that it
has been suggested that \ is zero corresponds to some presumption that it is
fairly small’’. After pointing to unsatisfactory features of a normal prior pdf
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for N\, he writes, ‘““The chief advantage of the form [(2.6)] what we have
chosen is that in any significance test it leads to the conclusion that if the null
hypothesis [\ =0] has a small posterior probability, the posterior probability
of the parameters is nearly the same as in the estimation problem. Some
difference remains but it is only a trace’’. (p. 273).

When (2.6) is substituted in (2.5) and the integrations are performed,
approximately in terms of the denominator, Jeffreys obtains (1967, p. 272):

Ky = (mv/2)V2 / (1 + 12/p) 1172 Q2.7

where v = n-1and 1t = </n y/s, with s = ¥"_, (y.-)?/» and the error of the
approximation ‘‘is of the order of 1/n of the whole expression’’. Also Jeffreys
(p.274) provides an exact expression for K;,. Shown below are values of K,,
for selected values of » and #? taken from Jeffreys’s table (p.439):

From Table 2.1, it is seen that when » = 20, K,, = 1 when 2 = 4.0 while
for v = 5,000, K;, = 1 when #2 = 9. It is thus seen that as » increases in value,
a larger value of #2 is required for indifference (K, = 1) between H, and H,.
This corresponds to a sampling theorist’s usual lowering of the significance
level as » grows in value and also bears a direct relationship to Lindley’s
Paradox (1957). Also note that in contrast to DeGroot’s (1973) result, the tail
area or ‘‘p-value’’ associated with the t-value is not equal to the posterior
probability on the null hypothesis®. For example, with » = 20 and ¢ = 2.0, the
“p-value’’ is approximately .025 and yet K;; = 1 or the posterior probability
on Hy:\ = 0is Y. Finally, as Jeffreys (1967, p. 272) remarks, the variation
of Ky, with ¢ is much more important than its variation with ». For moderately
large v, Ky, = (wv/2)V2exp(-12/2), from which the dependence of K, on » and
tis clearly seen.

In a brief treatment of regression, Jeffreys (1967, pp. 324-326) remarks
that ““...The whole of the tests related to the normal law of error can be
adapted immediately to tests concerning the introduction of a new function to

3. Jeffreys (1967, p.273) points out that if the prior pdf for v = N\/g were p(v) « exp{-cv?}, where
¢ is some given positive constant, the posterior odds ratio for \=0and A#0 ‘... would never
be less than some positive function of » [the sample size] however closely the observations
agreed among themselves’’. Also, on this same page he points out a second defect of this
normal form for the prior pdf.

4. It appears that DeGroot (1973) obtains his result that the tail area associated with a sampling
theory test statistics’s value is equal to the posterior probability on the null hypothesis by use
of a very special prior pdf on his parameter 6. His prior probabilities on §’s possible values are
fixed even though a given departure of # from its null value of zero implies differing
departures of the underlying location parameter’s value from zero as n, the sample size
changes.
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TABLE 2.1

Values of r? Associated with Corresponding
Values of K, and »=n-1 from (2.7)

K1z
v 1102 10t 10%2 102

9* 3.5 7.7 13.3
15 3.8 7.1 11.1 159  21.5

20 4.0 7.0 10.6 14.5 18.9

50 4.6 7.4 10.0 12.8 16.0

100 5.2 7.7 10.3 12.8 15.5
200 5.7 8.2 10.7 13.1 15.6
500 6.8 9.1 11.4 13.8 16.2
1,000 7.4 9.7 12.0 14.3 16.6
2,000 8.1 10.4 12.7 15.0 17.3
5,000 9.0 11.3 13.6 15.9 18.2
10,000 9.7 12.0 14.3 16.6 18.9
50,000 11.3 13.6 15.9 18.2  20.5
100,000 12.0 14.3 16.6 18.9  21.2

represent a series of measures’’. (p. 325). He considers the important special
case tor which the hypothesis is that an added term’s coefficient is equal to
zero and points out that (2.7) is the approximate posterior odds ratio for this
problem where 7 is the usual s-statistic relating to the added term’s coefficient
and » is the degrees of freedom associated with the ¢-statistic. Below it will be
seen that Jeffreys’s result is included in our gencral results as a special case.

3. POSTERIOR ODDS RATIOS FOR SELECTED REGRESSION HYPOTHESES
Let our regression modecl for the nx1 observation vector y be:

y=wot + X3 +u 3.1)

*For v = 9, Jeffreys has used his exact result for Ky, to compute the following 2 values: 3.8 for
Ky = 1,7.7 for Ky, = 10 V2, and 13.1 for Ky, = 10 %, 1t is seen that the exact results are in good
agreement with the approximate results even though » = 9 is small. Jettreys (1967, p. 439)
tabulates exact values for v = 1,2,3,...,9.
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where ¢ is an nx1 vector with all elements equal to one, « and 3 are a scalar
parameter and a kx1 vector of parameters with unknown values, (::X) is an
nx(k + 1) given matrix of rank k + 1 and u is an n + 1 vector of error terms. It is
assumed that the variables in X are measured in terms of deviations from their
respective sample means and thus «'X = 0’. Further, the elements of u are
assumed independently drawn from a normal population with zero mean and
finite variance ¢ with unknown value.
We initially consider the following two hypotheses:

Hi:3=0,-o <o <oand) <o < o (3.2)

Hy:3#0,-0o <a<owand) < ¢ < o, (3.3)
The likelihood functions under these two hypotheses are given by:

P (y!a,0,Hy) o o expi-(y-on) ' (y-cw)/20%) (3.4)

o g "expi-[vs7 + n(ay)?/20%)
and

p(Yiw,B,0,H;) o o7"expl-(y-ce-Xp3) " (y-ce-X[3)/ 207 (3.5
o o expl-[rast + 1 (@) + (B-B) X X(3-1)}/202)

where the proportionality constant is (27) "’2 in each case,

y = Yiapy/n, vst = Y ), vy = n-l
A A A
B = (X'X)1X"y, vys3 = (yye-X3) ' (yyi-X3), and v, = n-k-1.

The following prior assumptions will be utilized in obtaining a posterior
odds ratio. First we place equal prior probabilities of 2 on both hypotheses
and thus the prior odds ratio is 1:1. Second, under H,; we employ a diffuse
prior distribution for « and o, that is,

pla,o|H) x1/0 -0 <a<owand0 <o < oo. (3.6)
Under H, we utilize the following prior pdf

p(a,8,0|Hy) < f(Blo)/og -0 <a<owand0 <o < oo (3.7a)

with
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f(Blo) = ¢| X' X/no?|V2 /(1 + B'X'XB/no?) **1’? 00 <, < oo (3.7b)
i=12,.k

where ¢ = I' [(k+ 1)/2]/7 D72,

In (3.6) and (3.7a) the factors of proportionality are assumed the same.
Further, in (3.7b) it has been assumed that the prior pdf for (8 given ¢ is in the
form of a k-dimensional multivariate Cauchy probability density function
with zero location vector and matrix X'X/n, a matrix suggested by the form
of the information matrix.

The posterior odds ratio, K, for H, and H, with the prior odds ratio 1:1,

Ky = {p(y|a,0,H)p (a,0 | H)dado 3.8

Ip (¥|,B8,0,H)p (o, 8,0 | Hp)dadBdo

Explicitly, the integration in the numerator of (3.8) is performed as follows.
The integral to be evaluated is:

Iy=| Y = o trDexpl-[vys3 + n(a-p)?/20%)dade

Using properties of the univariate normal pdf, integrate with respect to « to
obtain:

Iy = n/n)12 S;"’o"”l*“ expi-v53/20%}do (3.9a)
= Qu/m)VA'(v,/2) (2/v52)12 /2

where the integration over ¢ was performed by utilizing well-known properties
of the inverted gamma pdf —see, e.g. Zellner (1971, p. 371)—.

The integral in the denominator of (3.8), denoted by I, will be evaluated
as follows:

Ip = [f(8]0.Hy)o~ "Vexpl-[vys3 + n (a-y)?
+ (B-B)' X' X(B-B)}/20%)dexdpdo

with f(8|0) given in (3.7b). First integrate over « using properties of the uni-
variate normal pdf'to obtain:

Io = @n/n)"2(f (8|0, Hy)oexpl-lvsh + (B-B)’ X' X(8-B))/ 20 dBdo.
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On inserting f (8 |g,H,) from (3.7a) and performing the integration with res-
pect to the elements of 8 approximately,3
1
I, = Qu/n)V2cQRn/vy)*'? s“)” %ﬂ - - expf-v,53/20%}do
tl +ﬁ ’X’Xﬁ/no-z}(lﬁl)/Z

Then,
Iy = QRu/n)Y2cw/v,)'* T (v,/2)1/2(2/v 5312/ (1 +f3 ’X’Xl\%/yzsﬁ)‘“l“z(3.9b)

where the integration over ¢ has beeen performed approximately.
Using the results in (3.9a) and (3.9b), the approximate posterior odds ratio
for H vs. H,is given by:

Kup= (1/0) (v o/ 27) /2w 553/ v sV + B X' XB/ v ,59) 1072
= a(v,/2)" %(v 5%/ v 5321172 (3.10)

with a=712/T'[(k +1)/2], since v,s3+ B'X'XB = »,s%. Alternatively, Ky, in
(3.10) can be expressed as:

Ky = a(vy/2)*2/[1 + (k/v)Fepy] "2 D72 3.11)
or
Kyp = a(v,/2)*%(1-R?) 2112 (3.12)

where Fi,,, = B'X'XB/ksj and R? = B'X'XB/(v,s3+B' X' XB), the usual
‘‘F-statistics’’ and the squared sample multiple correlation coefficient,
respectively. Further, a large sample approximation to -2(nK, is given by:

-2inKy, = x%- kiny, (3.13)

5. This approximate integration can be viewed as finding the mean of f(3|o, H;) a bounded
function of 3. Cramér (1946, p. 353 ff.) indicates that the error of the approximation is 0(n°})
in line with Jeffreys’s remark cited in Section I1. Thus if the posterior odds ratio K, = I/,
and if the integral I, is evaluated exactly and /,,= In+ 0(n-1), where I is the approximate value
of Iy, Kyp=I/[I+0(n Y] or 1w/, = Kyu[l1+0(nY)] and thus the error in using v/, is
K1,.0(n°Y), as pointed out above by Jeffreys.
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where x? = %’X’fi/s%.‘.
We now consider a hypothesis relating to a subvector of 8 in (3.1).
Rewrite (3.1) as

Y=o+ XB;+ Xo8, + u (3.14)

where X = (X;:X3) with X, and X, k,x1 and k,x1 vectors, respectively and
ki+ky=k. All other assumptions made in connection with (3.1) apply to
(3.14). For convenience, we shall reparametrize (3.14) as follows:

y=atr+Xm+ VB, +u (3.15)

where V = [I-X(X{X) XX, and n = By+(X{X) ' X{X,8,. Note that
X{V=0

A posterior odds ratio relating to the following two hypotheses will be
derived:

H,:8,=0 (3.16)
and
Hy;:68,+0 (3.17)

with «, the elements of y and o unrestricted under both hypotheses.
The likelihood functions under these two hypotheses are given by:

p(y|o,0,m,Ha) o< o7explvash + n(a-p)? + (-h) ' X{Xy(n-1)1/20%)  (3.18)

and

P(Y|a,0,7’lu32,Hﬂ) & 0"'exp{-[v,,s§ + n(a'y)z +
+ () XiXo(08) + BeBy) 'V V(BB 20%) (3.19)

where

6. To obtain (3.13), write (3.11) as K, = a(v,/2)*'% exp{r?-1)/2 in [1 +(k/u2)F,‘,,2]| and expand
the logarithmic factor in the exponential as (1 +x) =x. The result is K;,=a(v,/2)*"?
exp[-kF.,,z/Z}. Then -2(nK,, = xf - kbny,, where xf = ka,,z and terms not depending on v,
have been dropped in this large-v, approximation. Further, under 8=0 the approximate
sampling pdf for -2(nK;, can be obtained from that of xf. Also, again under g = 0 the
approximate cumulative sampling pdf for K;, in (3.11) can be obtained from that of F,(,,z.
That is, since K, is a one-to-one monotonic function of F“”'z for fixed k and v,, Pr(F,‘,,2 > X)
= Pr(K,; < x"), where x’ is the value of K, associated with l'-;,,.z = X.

38
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Y= Iy b= (XXDXDY,  vash= (- -X) (v -Xih),

A B A Lol A
va = nkil, Bo= (VW)WY  vush = (y-pu -Xii-VB) ' (y-yi-X1i-VBy)

and vy = n-ky-k,-1.
Under H,, we employ the following diffuse prior pdf for the parameters:

pale,on | Hy) o | X{X1|V2/0 -0 <aypi<oo i=1,2,...k; (3.20)

0<o<o
while under H, the prior pdfis:
Pu(c,0,m,82| Hy) &« | X{X1|V2h(B,|0)/ 0 (3.21a)
~o<a, i<, i=1,2,...,k;
0<o<oo
with
h(B3]0) = cs| V' V/na?|Y2/(1 + B,V VBy/no?) e+ 2 (3.21b)

s <Byu<o  i=1,2,...,k,

In (3.20) and (3.21a) the factor of proportionality is taken to be the same.
In (3.21b), the prior pdf for 8, given ¢ is the form of a k,-dimensional
multivariate Cauchy pdf with zero location vector and matrix V'V/n, a
matrix suggested by the form of the information matrix.
The posterior odds ratio, K, for H, and H, with the prior odds ratio 1:1
is:
Ky = Sp(yla,a,n,HA)pA(a,U,n|HA)dad0dn (.22)
Py | 2,0,1,82,Ha)plct,0,0,8,| Hy)dadodndB,

On applying integration techniques similar to those employed above (see
Appendix), the following approximate expression for K, is obtained:

Kap = b(vy/2)-2' (VHSIZ;/VASi)(""'”/Z
= b(va/2)22 [(1-R%)/(1-R%)} w112 (3.23)

= b(vp/2)*2"%/[1 + (kz/V,,)F,‘z,,"]"'u'l)/z
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where b = 7V2/T[(k,+1)/2], Ri and R: are the squaref\i samgle multiple
correlation coefficientes under H, and H, and F,, = BV’ VB,/ ks, the
usual ‘‘F-statistic’’. Also, if v, is large, the following approximate result is
available:

2K = X; - kofnvs = vi(Ry-R2)/(1-R}) - kofrw. (3.24)
. 2 A A 2
with Xy, = BV VBy/S,.

We now consider the following four hypotheses relating to 3, and 3, in
(3.14), each assumed to have the same prior probability:

H,:8,=0andgB, =0, (3.25a)

H,:3,# 0and B, # 0, (3.25b)

Hy:8;,# 0and 3, = 0, (3.25¢)
and

H,:3,=0andgB, # 0, (3.25d)

The posterior odds ratio for H, and H,, K,,, given in (3.11) is:
Kz = a(vy/2)X*/[1 +(k/v)F )21/, (3.26)

where @ = 71/2/T[(k +1)/2] and v, = n-k-1. This odds ratio has been derived
employing the prior assumptions in (3.6) and (3.7), the latter involving a
multivariate Cauchy prior pdf for 8, and (3, given o. The posterior odds ratio
for Hyand H,, K, is identical to K45 in (3.23), namely

Kap = b(r/2)2"%/[1 + (k2/v)F,, 02172 (3.27)

where b = w1/2/T'[(k,+1)/2] and v, = v, = n-k-1. K3, also can be obtained by
using the conditional prior pdf for 3, given 3, = 0 and o associated with the
multivariate Cauchy pdf in (3.7b) under H, along with uniform independent
priors for « and log o. Similarly, the posterior odds ratio for Hy and H,,K},
can be obtained and is:

Ki = qQra/2)V?/[1 + (ky/v9)Fip,i 20" (3.28)

where g = 7/2/T'[(k,+ 1)/2]. Last, from (3.27) and (3.28), the posterior odds
ratio for Hyand Hy, K34 is:
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(vg-1)/2
K= Kup/ K= g(v/2) 02072 < L+ kb, ) i (3.29)

l + (kz/Vz)sz,,z

where g = T'[(k;+1)/2}/T[(k,+ 1)/2].

The posterior odds ratios in (3.26)-(3.29) can be helpful in screening sets
of variables, X; and X, for inclusion a in regression in situations in which
there is little prior information and the initial presumption is that neither set
of variables probably belongs in the regression. A special case of the above
analysis is one in which X, and X, are vectors and thus 8, and 3, are scalars. In
this case, we are screening individual variables por possible inclussion in the
regression.  Further, elaboration of the hypotheses in (3.25) to relate
individual coefficients is possible and would lead to posterior odds ratios
useful in determining which individual variables to include in a regression.

To gain greater familiarity with the odds ratios derived above, we now
turn to consider some numerical evaluations of them.

4. NUMERICAL EVALUATION OF SELECTED ODDS RATIOS

In this Section, we provide some numerical evaluations of the odds ratios
derived in Section III. First, note that when k = 1, the posterior odds ratio K,
in (3.11) for the hypotheses 3 = 0 and 8 # 0 reduces to Ky, = (wv,/2V2/(1 +
2/v?) 2172 with p2 = n - 2 which is exactly in the form of Jeffreys’s odds
ratio in (2.7). Thus the numerical results in Table 2.1 apply directly to the case
of simple regression. From Table 2.1, it is seen that for v, = 20, K;, = 1 when
2 = 4.0 where 2 = 32L(x; - X)%/s? is the square of the usual f-statistic. Since
r* = 2/(»? + %), a value of r* = 1/6 corresponds to 2 = 4.0 and K, = 1 for
v, = 20. For », = 5,000 and 2 = 9.0 (or r2 = .0018), K;; = 1. Thus
indifference, (K;, = 1) is achieved for a larger value of #2 (or a lower value of
r?) with v, = 5,000 as compared with v, = 20. For », = 20, K;, = 1/100, that
is the odds are 100:1 against 3 = 0 when 2 = 18.9 or r* = .486. For v, =
5,000, K;; = 1/100 when 2 = 18.2 or 2 = .00377. Thus with v, = 5,000, a
value of 2 = 18.2 (or equivalently, r» = .00377) strongly favors the
hypotheses 3 # 0. Since values of v, in the vicinity of several thousand are
frequently encountered in analyses of cross-section or survey data, these
results are relevant for applied work. In particular, they point (a) the need for
absolutely larger t-values for indifference (K;; = 1) as v, increases and (b)
recognition that for large values of v,, small values of 72 can be consistent with
strong evidence against 3 = 0. These results, it must be emphasized, apply in
situations in which we have little prior information about 3’s value under the
hypotheses 8 # 0. If rmore information is available, suitable prior pdf’s
reflecting it would have to be introduced, as pointed out by Jeffreys (1967, p.
252).
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TABLE 4.1
Values of R? and Fi,,, Associated with
Particular Values of K, and k in
(3.12) for v, = 20 and », = 100*

A.v, =20
Value K, .01 and .05 Critical
k of: 1 10-12 10! 10-3/2 102 Values of F and
Associated R?’s
.01 .05
1 R? .16 .26 .35 42 .49 .29 .18
Fi,2 4.0 7.0 10.6 14.5 18.9 8.10 4.35
2 R? 27 .35 43 .49 .55 .37 .26
F,,5 3.7 5.5 7.5 9.7 12.3 5.85 3.49
3 R? .35 42 .48 .54 .60 43 32
Fi,5 3.5 4.8 6.3 8.0 9.9 - 4.94 3.10
4 R? .40 .47 .53 .58 .63 47 .36
Fy 2 3.4 4.4 5.7 7.0 8.6 4.43 2.87
5 R? 45 .51 .57 .61 .66 .51 .40
Fs,5 3.2 4.2 5.2 6.4 7.7 4.10 2.71
6 R? .48 .54 .59 .64 .68 .54 .44
Feg,2 3.1 3.9 4.9 5.9 7.1 3.87 2.60
B. v, = 100
1 R? .050 .072 .093 1 .13 .065 .038
Fi,100 5.2 7.7 10.3 12.8 15.5 6.90 3.94
2 R? .089 11 .13 .15 17 .088 .058
F,100 4.9 6.2 7.5 8.8 10.3 4.82 3.09
3 R? 12 .14 .16 .18 .20 11 .075
Fi,100 4.6 5.5 6.4 7.4 8.3 3.98 2.70
4 R? 15 .17 .19 21 23 12 .090
Fy100 4.4 5.1 5.9 6.6 7.3 3.51 2.46
5 R? .18 .20 21 23 .25 14 .10
Fs,100 4.3 4.9 5.5 6.1 6.7 3.20 2.30
6 R? .20 .22 .24 .25 27 15 12
Fe, 100 4.2 4.7 5.2 5.7 6.2 2.99 2.19

*Note that Fy,,, = (v,/k)R?/(1-R?), with v, = n-k-l.
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In Table 4.1, we have evaluated the posterior odds ratio Ky, for H;: 8 =
0vs. Hy: 3 # 0 for v, = 20 and », = 100, where v, = n-k-1 for selected
values of &, the number of elements in 8 and selected values of R?, the sample
squared multiple correlation coefficient. Also shown in the table are values of
associated F-statistics, Fj,,, = (v,/k)R?*/(1-R?), and .01 and .05 critical values
of the F statistic as well as the R? values associated with these critical values.
From the first line of Table 4.1, we see that for k = 1 and v, = n-k-1 = 20, Ky,
= 1 when R? = .16 and F,,,, = 15, = 4.00. Note that for these conditions the
sampling theorists’s .05 critical value of Fis Fj,,,(.05) = (2.086)? = 4.35 with
an associated R? = .18. Thus the 5% F value is somewhat larger than the
Bayesian indifference (K,, = 1) value of 4.0. Alternatively, an R? = .16 leads
to K;; = 1 while an R? = .18 is associated with the sampling theorists’s .05
critical value of F. On the other hand, a .01 critical value of F'is 8.10, with an
associated R? = .29 which is far from the F value 4.0, or R? = .16 which
yields K;, = 1.

TABLE 4.2

Values of x? and Associated R?’s for K;, = 1
Using Approximate Formula (3.13) for », = 20
and », = 100 and Selected Values for k

v, =20 v, = 100 .05 and .01 Critical

Values of x?

k x? R* x? R x#(.05) x#(.01)
1 3.00 13 4.6 .044 3.84 6.63
2 5.99 .23 9.2 .084 5.99 9.21
3 8.99 31 13.8 12 7.81 11.30
4 12.0 .37 18.4 .16 9.49 13.30
5 15.0 .43 23.0 .19 11.10 15.10
6 18.0 47 27.6 22 12.60 16.80

A A
* Notethat;? = 3'X’'XB3/s? and R? = x¥/(v, + x%), where v, = n-k-l.
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In Table 4.2 values of xZ and associated values of R? which correspond to
Ky, = 1 have been tabulated for », = 20 and », = 100 and £ = 1,2,...,6, to
gain some information on the quality of the approximation in (3.13). The
entries in Table 4.2 have been %omputed from the large sample approximate
formula (3.13), that is -2(nK,, = x? - kfnv,. Also shown in Table 4.2 are the
.05 and .01 critical values of x%. For k = 1 and », = 20, the indifference
values of x§ and R? are 3.00 and .13, respectively. The latter value can be
compared with the more accurate indifference value of R? = .16 given in
Table 4.1. The difference in these values arises because the results in Table 4.2
are based on a cruder approximation than those in Table 4.1. For v, = 100,
the corresponding indifference (K,, = 1) values of R?in Tables 4.1 and 4.2 are
fairly similar in value. Also, from Table 4.2, the relation of the crude
indifference values of x# can be compared with the .05 and .01 sampling
theory critical values of x%. For », = 100, it is seen that for k = 1, the
indifference value of x3, namely 4.6 falls between the .05 critical value, 3.84
and the .01 critical value, 6.63. For kK > 2 and », = 100, the Bayesian
indifference values of x? are all larger than the .01 critical values of x2.

As regards other posterior odds ratios derived in Section III, it is the case
that the numerical results in Tables 2.1, 4.1 and 4.2, can be utilized to evaluate
them provided that the degrees of freedom and k parameters are suitably
reinterpreted. For example, the expressions for K, in (3.23) and (3.24) can be
evaluated if in using the tables, k is replaced by k,, F..? is replaced by Fiy
(note », = v, = n-k-1) and x? is replaced by x?Z,. Similarly, the odds ratios K3,
and K, in (3.27) and (3.28), respectively can be implemented using the results
in the tables by similar redefinitions. Last, the odds ratio, Ks, in (3.29) can be
evaluated from results given in Table 4.1 by use of K3, = K3,/K,,;, where
values of K3, and K, can be obtained from entries in Table 4.1. Finally, it is to
be noted that in the expression for Kj, in (3.29), there is an interesting
allowance for the possibly differing numbers of parameters in 3, and (.

5. SUMMARY AND CONCLUDING REMARKS

In this paper we have derived approximate posterior odds ratios for sharp
null hypotheses which are frequently encountered in regression analyses.
These posterior odds ratios are appropriate when little is known regarding
parameter values and special attention is given to specific values, e.g. zero
values of the regression coefficients. With slight modifications, other special
values can be incorporated in the analysis by reparametrizing to convert the
null hypotheses to involve zero values. In our work we have employed
asymptotic expansions of certain integrals which are very convenient, yield
results which can be compared directly with sampling theory analyses, and are
quite accurate, as shown in Jeffreys’s work. With some extra computational
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cost, a numerical integration approach, suggested by Dickey (1971) could be
applied to obtain slightly more accurate results.

In line with Jeffreys’s, Lindley’s and some others’s previous results, we
have found that sampling theorists’s usual .05 critical values of test statistics
can be far from a Bayesian posterior odds indifference value of one under a
variety of circumstances. Whether this finding is interpreted as a systematic
flaw in sampling theory practice is of course critically dependent on the nature
of the usually implicit loss structure used in sampling theory testing. Cases in
which sampling theorists mechanically employ a 5% significance level no
matter what the sample size and/or the number of parameters are interpreted
as flawed analyses. If sampling theorists and Bayesians carefully consider the
underlying loss structure in choosing between or among hypotheses, the above
analysis indicates that there can be a compatibility between Bayesian and
sampling theory results in testing but, of course their interpretations will
differ radically.

While, as pointed out above there can be some degree of compatibility
between Bayesian and sampling theory testing results, the direct interpretation
of sample evidence, as reflected in F statistics or R? values in terms of
posterior odds ratios stands in marked contrast to sampling theorists’s and
others’s unclear interpretations of sample evidence in terms of ‘‘p-values’’,
and/or values of R? or of R?, the adjusted coefficient of determination. As
mentioned above, a p-value associated with the value of a test statistic is not at
all an accurate measure of the posterior probability associated with a null
hypothesis. However, it should be noted that most of the posterior odds ratios
derived above are monotonically increasing functions of the p-values
associated with ¢ or F statistics involved in the posterior odds ratios. Thus
there is some rationale for considering p-values; however, since posterior odds
ratios have a direct interpretation and explicitly reflect the prior information
employed, their use is preferable to the use of p-values. Also, posterior odds
ratios on alternative hypotheses can be employed, as described below to
average estimates (and predictions) over alternative hypotheses when
posterior odds ratios do not yield a clear-cut choice of a particular hypothesis.

In terms of the hypotheses considered above, it is possible to use their
associated posterior odds ratios to obtain optimal (relative to quadratic loss)
Bayesian ‘‘pre-test’’ point estimates --see Zellner and Vandaele (1974, pp.
640-641). For example with respect to the hypotheses H, : 3 = 0 and H, :
B8 # 0, the point estimate that is optimal relative to quadratic loss is 3 = P,0
+ (1-FYB = (1-PYB = (1+K,,) 13, where P, is the posterior probability for
H,, K,; = P;/(1-P)) is the posterior odds ratio for H, and H,, and {3 is the
posterior mean for 8 under H,. With the prior pdf (3.7) which we have
employed under H,, 3 will be close to 3, the least-squares estimate. Thus 8 =
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(1+K 12)'1% where K, given in (3.11) is a function of the usual F statistic. Also
note that the ‘‘shrinkage factor’’, (1 +K;;)! is between zero and one with a
value near zero when K, is large and a value near one when K, is small. This
shrinkage factor can be compared with others which have appeared in the
sampling theory literature —see Zellner and Vandaele (1973, p. 639).

Finally, it would be interesting to compare the posterior odds ratios
derived above with others based on more informative prior distributions.

APPENDIX
Herein we evaluate the integrals appearing in equation (3.22) of the text.
The integral in the numerator, denoted by Iy is:

Iy & [ | X{X; |20 " Vexp{-[vash + n (ap)? (A.1)
+ (1-1) ' X1X1(n-1)1/ 20%}dadndo.

- A . . . . .
where v,4, 54, y and 5 have been defined in the text in connection with (3.18).
We can integrate over « and the k, elements of » using properties of univariate
and multivariate normal pdf’s, respectively to obtain:

Iy oc 2m)*1*) 212 [ TG-aexpl-v 455/ 20% do. (A.2)

Using properties of the inverted gamma pdf, the integral in (A.2) can be
evaluated to yield:

Iy oc 2m)*1* D2 120 (p . /2) (1/2)(2/ v 45%)*472. (A.3)

The integral in the denominator of (3.22) in the text, denoted by I, is:

Ip o [h(B2]0)| XiX; |20~ " Vexpl-[vash + n (a-p)? (A.4)
A A A A
+ (1-n)' XiX1(-n) + (B-82) V' V(B5-B2)1/20% dadndo

where 4 (8| 0) is given in (3.21b) of the text and v, s3, 7A1, 232 and V have been
defined in connection with (3.19). The integration over o and 5 can be
performed exactly using properties of normal distributions to yield:
I oc 2m)* 10 2p°12[ b (B, | 0)o™ " *1exp|-[v nsh (A.5)
A A
+ BB V' V(B2-B2)1/20%)dBdo
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The integration over 3, can be done approximately by noting that is it
equivalent to obtaining the expectation of the bounded function 4 (3,|0).
Following Jeffreys’s approach and also Cramér's (1946, p. 353)
approximation results, we have on integrating approximately with respect to
the k, elements of (3,

A A
I, o (2m) kD /2p-tg* 1172 C,,j:(l + B4V’ VBy/no?) tar1r/2
o g " kexpl-vps3/20%)do
Large values of the second two factors in the integrand of this last expression
are near vpsé/n. If, as Jeffreys (1967, p. 272) does, we substitute 02 = vys3/n
in the first, slowly varying factor of the integrand, and then integrate with
respect to g, the result is:
A A
I, & c2mtD2p-ta* (1 + BRIV VB,/ v ps3) k2t 1) /2 (A.6)
XT (va/2) (1/2) (2/ v psE)a’?

Then, using (A.3) and (A.6)

I 1 ‘n\ k2/2 2 \,,2
K= — = — (2_ > 2 (VHSZ > (LB, V By vasiy iz b2 (AT)
[I) Cp VaSa

Now ¢, the normalizing constant in (3.21b) is
A A
cp =T [(ky+1)/2)/n*2*V/2 and v 454 = vush + B3V’ VB, Thus,
Kap = b (vy/2) 22 (vpsh/v 4s3) s~V 2 (A.8)

with b = 7'/2/T[(k,+1)/2] and where in going from (A.7) to (A.8) (n/2)*2/2
has been replaced by (vx/2)*2’2 which to the order of the approximation is
equivalent. (A.8) is exactly the expression in (3.23) in the text. Further, on
substituting v,s4/v.s% = (1-R%)/(1-R%) in (A,8), the second line of (3.23) is
obtained. Finally, from vash = wvpsh + BiV'VB,  vaSi/vnsk = 1 +
B2'V'VBy/vush = 1 + (ky/vu)Fiy,, which when utilized in (A.8) gives the
third line of (3.23).
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