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DISCUSSION
J.M. DICKEY (University College of Wales Aberystwyth):

I find the paper by Dr. Leonard stimulating. Many of us would agree with the
statement that there is much more to real inferences than is modeled by Bayes’
theorem: for example, that a given subjective-probability distribution might be usefully
conditioned on new data at a particular time, but that to continue formally updating it
to a sequence of new data over a long period without rethinking the probability model
would be foolish. It would even be foolish to rely on Bayes’ theorem on a single
occasion if one closed one’s mind regarding the assumptionsused.

But, of course, it is not necessary to close ones mind, nor ones eyes and ears.
Bayesian theory does not require that, although it may seem so to some authors
because of the silence in Bayesian theory on the subject of how to think up new models.
The implications of coherence for the subject of learning from data have to do with
what attitudes to take regarding contingent bets, how to reason now about the
information in future data. The axioms of coherent potential behaviour do not imply
that, after the data is in, one should actually follow the previous plan in updating ones
opinions. That is, probability conditioning (for example, Bayes’ theorem) is not
necessary for real opinions, but it provides a point of reference, a rational yardstick, a
standard relationship between prior and posterior opinions. If ones opinions do not
obey probability conditioning, then one looks for a reasonable probability model under
which they do, or which implies opinions that one can reasonably adopt.

How ¢hould a Bayesian statistician look at his data to see whether he will need to
think up ne v models? Karl Popper (1972) imagines scientific research as a continuing
process of using experimental data to test the validity of theories which are then revised
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when rejected by tests. Popper’s nonBayesian conception also suffers from silence on
the subject of how to think up new models. Also, it inherits a defect from traditional
statistical ‘‘data analysis’> on the subject of how to decide whether a new model is
needed. This defect in traditional tests for validity-checking of models was pointed out
by Berkson (1938). In practice, no model ever tested is exactly true, and any
prespecified model will be rejected for a large enough (fixed-size) sample. This makes
acceptance of models largely a question of the size of samples taken. (See Kadane and
Dickey, 1979, for a Bayesian discussion of this problem). Another question, for which
a traditional statistician’s answers can only be highly subjective when no alternative
models have been suggested, is the more general question of which validity tests to
perform. Which experiment to perform also remains largely subjective.

So traditional theory and Bayesian theory are both limited in the scope of their
application. I think it is a mistake, though, to say that coherence implies complexity or
that coherence misleads. Do the rules of logic or arithmetic mislead? Nor does IMP to
my mind ‘‘oppose’’ coherence, unless Dr. Leonard insists on tying IMP to the Freudian
notion of Id. I agree that IMP seems complex, but I call on Dr. Leonard and others to
develop theory to shed light on its mysteries.

Dr. Leonard reminds us of the old question of discrimination methods versus
regression analysis. It is really simpler for the statistician to specify p (x|A) than
p (|x)? I note that he suggest the use of estimated sampling probabilities to
approximate predictive probabilities, while Aitchison and Dunsmore (1975)
recommend the use of predictive probabilities to estimate sampling probabilities.

Finally, it is claimed that the Bayes factor is sensitive to the choice of conditional
prior density, and increasingly so for increasing sample size. Of course, in practice the
Bayes factor goes to zero or to infinity as sample size increases. A very small or very
large Bayes factor is strong evidence for or against the more complicated model,
respectively. So it remains to be shown that the ‘‘sensitivity’’ happens before the
evidence becomes too strong to be refuted by the changes in the Bayes factor wrought
by reasonable perturbations in the prior density.

My comments on Professor Novick’s paper joint with Dekeyrel and Chuang
would seen to apply with equal force had the paper been concerned with probability
assessments, rather than utility assessments. (Utilities are equivalent to probabilities in
technical senses, and this equivalence is exploited in their assessment methods).
Therefore, 1 should like the authors to consider my comments with an eye to the
possibility that I have failed to appreciate properties inherent only to utilities. Perhaps
they would bring out the important differences in their reply to this discussion.

The methods given are ingenious and rather elegant. A person wishing to use them
to assess his own utilities would, I feel sure, need to spend appreciable time and effort
learning to use them as effective tools. The worry, of course, is that in so doing the
person may acquire bad habits or ‘‘biases’’ that would connect up his different uses of
the tool, rather than connecting together the tool and his underlying utilities.

Instead of a ‘“‘person’’, the authors refer to a ““subject’’. This latter term has been
reserved in the psychological literature to mean the same as ‘‘object’’, in the spirit of
conceiving persons other than oneself as machines. One trouble with this conception is
that it just does not work well, except at a mere physiological level. Persons do not
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behave predictably without reference to context, including the histories of their
personal attitudes and social settings (Kelly, 1955). Experiments tend to be aimed at
discovering simple universal context-free laws of behavior, such as, laws that would
favour this assessment tool over that one. What is it that justifies our thinking that
isolated laboratory experiments will yield psychological findings of any importance in
real-world applications?

In spite of the doubts expressed here, I should like to urge the authors to carry out
the experiments envisaged, preferably in real applications.

W.H. DUMOUCHEL (Massachusetts Institute of Technology):

Professor Leonard’s emphasis on the necessity to develop workable procedures,
and to show our colleagues that they do work, is well put, in my opinion. More focus is
needed on what we can do, rather than too much concentration on the logical
inconsistencies of classical statistics. Strict consistency is often unattainable in the real
world. For example, we all know that prior distributions cannot logically depend on the
data. Yet Professor Leonard rightly points out that most responsible statisticians,
Bayesian or not, will try to obtain a ‘‘feel’’ for the data with plots, etc., before inducing
a likelihood function or even deciding on a parameter space. However, 1 am not so
pessimistic as to rule out a useful Bayesian approach to many ‘‘global’’ problems.
Often a mixture of two or three models can quite well capture the essentials of even a
fairly complicated situation, and thus help derive real-life conclusions from the data.
The binomial example of section 4 does not seem convincing to me. The situation is
that of choosing between H, and H, based on the observations of n exchangeable
observations of 0 or 1, whose sum is x

Hy:x~ Py(x)
H,: x| ~ Bin(n,f)
x=0,1,...,n # ~ Beta («,f3)

The supposed paradox is that posterior odds ratio of H, vs H, depends
importantly on « and 3 even as n — oo, especially if x/n is far from o/(« + ). But the
fact of n being large here does not reasonably imply that the sample information should
‘“‘swamp’’ the prior information. When alternative H, is true and # is large, the
variation in § = x/n is negligible conditional on 8, so that the relevant comparison is

Hy: 0~ Pynd)
H,: 6~ Beta («,5)

Thus the problem is more like that of deciding whether a single observation could
have a particular beta distribution, and naturally the parameters of that beta
distribution would play an important role in the decision.

On another point, in spite of my own liking for logit probability models, I suspect
they are being oversold in section 7. The author’s distinction between a probabilistic
and a predictive model eludes me. Two possible interpretations are: (1) the full
information versus conditional information approach to contingency tables, or (2) the
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errors in variables problem of regression. But the further discussion doesn’t seem
relevant to either interpretation. The author seems to imply that multivariate density
estimation is simpler and more reliable than more common procedures such as stepwise
regression. I would guess that use of one of the various robust regression techniques
now widely available would be more fruitful than abandoning the ordinal structure of
the response variable in favor of a purely categorical-data approach.

Finally, as an argument against constructing unnecessarily complicated models,
the author states in section 8 that modeling a thick-tailed distribution is unnecessary if,
even with a normal model, the real-life conclusions are the same with and without
inclusion of the outliers in the analysis. This cannot be true in general, as the following
example shows. Suppose that a sample of size n = 100 has mean 0 and standard
deviation 1, with one or two outliers near the value x = 4. Suppose further that the
real-life problem is to decide whether Prob (X>4)<.00l. Then a normal model
including the outliers would estimate Prob (X >4) <10-%, while excluding the outliers
would result in a smaller sample standard deviation and an even smaller estimate for
Prob(X >4). Yet fitting the data to most families of thicktailed distributions would
estimate Prob(X >4) to be near the sample proportion, namely 0.01.

Professor Novick and his co-authors are to be commended for continuing to
explore a topic so vital to the practical functioning of the Bayesian method. Until we
can show how prior opinion can be elicited in a workable fashion, the subjective
Bayesian viewpoint can hardly proliferate. The present paper considers with care and
sophistication a simple problem involving a single, ordered attribute, and makes us
very conscious of how much harder a more realistic elicitation involving several
dimensions and a complex data set would be. The work of Kadane et.al. (1979)
combined with the present paper provide a start toward computerizing this process.

The author’s references to the work of Amos Tversky and his associates are
welcome. Certainty bias and anchoring bias are present not only in elicitation
problems, and overcoming them can be used as a theme for data analysis in general.
Whenever we tell our elementary statistics classes to be more conscious of variation, we
are fighting the certainty bias, and when we teach proper methods of estimation we
counter the anchoring bias. But Bayesian methodology is peculiarly affected, on a
second level, by these tendencies. A stronger potential barrier to solution of the
elicitation problem is raised by the work of Shafer (1976) who argues that human
opinions are too complicated to be represented by simple probability distributions or
utility functions. 1 would be interested to know if experiments such as the present
authors are performing could be designed to test this or similar propositions.

In any event, the “‘local’’, ‘‘regional’’, and ‘‘ends in’’ procedures presented here
seem reasonable and clever and I am looking forward to the results of the authors’
future experiments. There are just a few more specific questions that come to mind:

a) What if the ordering of the states is not prescribed? Would your methods
change?

b ) Although elicitation of probabilities is formally identical with the elicitation of
utilities, the psychological reactions of subjects may differ for the two tasks. Is
there any evidence of this?
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¢ ) What evidence is there that the regression on the log odds scale is optimal for the
coherence checking algorithm? Might some weighted regression be better? Is the
standard error of the residuals a useful number?
¢ ) How much real time do these elicitations take? How long for a novice to elicit all
the factors for the probabilities in a 2x2 table, and what fraction of-them show
noticable fatigue and/or boredom before finishing?
I hope that these questions will help stimulate the authors to continue their
interesting work.

J.M. BERNARDO (University of Valencia):

I certainly believe that the idea used by Professor Novick of requiring the decision
maker to give more than the minimum number of judgments in fitting a personal
probability distribution or utility function is important and very useful. I wonder
however what is the coherent justification for using least squares in order to force
coherence among those judgments

S. FRENCH (University of Manchester):

Firstly, perhaps Dr. Leonard will forgive my pointing to an unfortunate omission
in his paper. In quoting DeGroot’s axiom system for subjective probability, he omits
the CP axiom (DeGroot (1970), Chapter 6). It is the CP axiom that introduces the
notion of conditional probability and hence justifies the use of Bayes Theorem.
Without the CP axiom this system does not pretend to justify Bayesian inference. If
Dr. Leonard wishes to criticise the use of axiom systems, he really should cite a whole
system.

Turning now to the paper of Novick, Dekeyrel and Chuang, I have two questions
that I should like to ask. First, in the fixed state method of assessment the values U(8,)
= 0, U@y) = 1 are fixed. The values of U(f,) for intermediate n are determined by
relations of the form

ue.) = p.U0..) + (1-p)Ul0,.) *

Now, since the paper’s very essence is to admit incoherence on the part of the
decision maker’s statements, it must be admitted that the p, are “‘in error’’. Does this
error transmit itself evenly to the determination of U(6,) or does the error on the U(6,)
rise steadily from 0 on U(f,) to a maximum on U(fy,,) before falling away to 0 again on
U(6~)? There is a relevant passage in Spetzler (1968) in which he discusses the relative
merits of three different methods of measuring utility.

My second question concerns the decision makers’ role in the resolution of
incoherence. For me one of the basic aims of decision analysis is to bring
understanding. In particular the process of introspection is not simply one of
measuring utilities and subjective probabilities. Rather it is a process that helps the
decision maker explore his preference belief structure, discover inconsistencies, think
about them and then resolve them. It seems imperative to me that of method of
construnting a decision maker’s utility function should always refer back to him any
discovered inconsistency so that he may reconsider his preferences. Only when all the
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inconsistencies are of such a slight nature that it is beyond the decision maker’s powers
of discrimination to resclve them, should an automatic resolution process be invoked.
Do I understand that the authors’ procedure does in fact do this, namely only use least
squares with coherence constraints as a tidying up device having left all the major
resoution of inconsistency to the decision maker?

J.B. KADANE (Carnegie-Mellon University):

In the discussion, both Dennis Lindley and Bruce Hill strongly criticized Tom
Leonard’s paper for not being sufficiently Bayesian. In doing so, I think that they have
overreacted. When a Bayesian does statistical modelling and data analysis,
compromises are often necessary to keep control of the analysis, to separate what is
important from what is not. -

To associate Tom Leonard’s position in this paper with Glenn Shafer’s, as did
Bruce Hill, is to mix two very different positions, I think. As I understand Shafer’s
ideas, he rejects Bayes Theorem and the Bayesian paradigm as a theory. This seems to
me very different from Leonard’s position, which keeps Bayesian theory as essential
background for doing statistics. To associate these positions does an injustice to both
Leonard’s and Shafer’s positions.

D.V. LINDLEY (University College London):

I find myself in almost total disagreement with the views expressed in Leonard’s
paper. Coherence becomes more important the bigger the situation, not less. If only
one uncertain event is assessed, then coherence does nothing more than assert that the
descriptive number lies between 0 and 1. With two events, 4 and B, coherence begins to
play a more important role: for example, p(AB) = p(A)p(B|A). The more events, the
more opportunity there is to exploit coherence and the more necessary it becomes to do
s0.

Perhaps it is this fallacious view that leads to Leonard attaching importance to
Axiom 5. All this axiom does is to tie probability to a numbering system: the
multiplication and addition rules, the rules of coherence, are really contained in the
earlier, important axioms and his omitted axiom of called-off bets. Probability is not
just a number between 0 and 1: it is a number obeying two important rules of
combination.

A. O’HAGAN, (University of Warwick):

Dr. Leonard’s IMPs are of course an over-complication, providing no real insight
into the processes of practical statistics. But if we regard them as merely a thin excuse
for presenting a miscellany of ideas - his sections 4 to 12 then there is much food for
thought in his paper. I would like to examine just a few of the snapshots in Dr.
Leonard’s album.

His skewed-normal distribution of section 8 is ingenious, but I wonder if some of
his criteria (i) to (vii) were chosen a posteriori. 1 commend to him the skew distribution
derived in O’Hagan and Leonard (1976), for which I think we could draw up an equally
impressive list of criteria. For instance it is more tractable than the skewed-normal.



574

The sensitivity of the Bayes factor (4.3) to the prior hyperparameter a in his
binomial example of section 4 could be quite worrying. Some insight is obtained
initially by ignoring 6. Since D («,B) is simply the prior (marginal) probability of the
frequency x under the binomial model, we are just comparing the two simple
hypotheses given by the distributions p, (x) and py(x) = D («,B). The observed value of
x discriminates strongly between the hypotheses if the ratio R, = p, (x)/py(x) is very
large or very small. Dr. Leonard introduces a third hypothesis, that x has distribution
pAx) = D (a + 1,8) and observes that it may be possible to find an x which does not
discriminate strongly between py and p, but does discriminate strongly between p, and
Pp,- He does this by showing that the ratio (4.5) can give an x that discriminates strongly
between p, and p,. His thesis is that this odd because p, and p, are very similar. But
with most parametric families of distributions we can find observations discriminating
strongly between any two members of the family, however close their parameter values
may be. Consider for example the distributions M0,1) and Me, 1): however small
|e| >0is, as x tends to infinity the likelihood ratio

exp {-Y2x% + V2 (x-€)?} = exp (-xe + V2¢€?)

tends either to zero or to infinity. Almost all the parametric families in common use
have monotone likelihood ratios (see LLehmann (1959)) and in most cases the likelihood
ratio is unbounded. In fact, since Dr. Leonard’s beta-binomial has a bounded
likelihood ratio (for given sample size), he has chosen one of the less convincing
examples of ‘‘sensitivity’’. Other examples may be constructed similarly ““— p,(x)”’—
is formed from a prior distribution for a scalar parameter ¢ indexed by a prior
hyperparameter ¢, and a sampling distribution for x given 6. Whenever these two
distributions have monotone likelihood ratios, e.g. any two exponential-family
distributions (Lehmann, p. 70), then p,(x) will have a monotone likelihood ratio in ¢
(Lehmann, p. 343 problem 7).

Therefore, Dr. Leonard’s sensitivity problem arises whenever we deal only in
exponential families. Having seen the ‘‘problem’’ in the above terms I feel that it is not
as unreasonable as he implies, but I do think that it is important to recognise that nearly
all commonly used distributions will lead to this kind of behaviour and that radically
different behaviour is possible using distributions with non-monotone likelihood
ratios. In O’Hagan (1979), and more explicitly in a follow-up paper submitted to the
Annals of Statistics, I have made this point in connection with a different kind of
behaviour which always results from using distributions with monotone likelihood
ratios, and not otherwise. In his section 9, Dr. Leonard criticises exponential families
on even more fundamental grounds. It is time that we looked very seriously beyond the
convenient, tractable exponential families because they are severely limiting the kinds
of inference that we can make.

A.F.M. SMITH (University of Nottingham):
Leonard seems to be making two rather strong attacks on the axioms. If I
understand him correctly, he states that:
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(i) the straightforward claims set out in 2a) and 2b) are much more directly
compelling to clients than are the axioms; and, in any case, they are more
honest,

(i) the axioms are tautologous.

Let us first consider (i), and recall that statement 2a) invokes the phrases ‘‘much
more reasonable’’, while statement 2b) refers to ‘‘superior practical results’’. Does
Tom Leonard really believe that these particular phrases can (honestly) command
general acceptance as having directly obvious meanings that require no further
analysis? And if someone refuses to accept these as primitive terms of reference, [
think I know where Tom Leonard would eventually end up in attempting an
unambiguous explication of ‘‘reasonable’” -and ‘‘superior’” - back at this axiom
system!.

The criticism in (ii) seems most peculiar!. Theorems deduced from the axioms are,
of course, ‘‘contained in’’ them in the sense Tom Leonard presumably intends. But,
surely, the (for us) rather profound methodological implications - the likelihood
principle, the need to integrate out nuisance parameters - are in no way obviously
‘“‘contained in’’ the axioms in the sense that they are directly intuited (or guessed, even)
by someone who contemplates the axioms?

T.W.F. STROUD (Queen’s University Canadaj:

Leonard’s article presents a refreshing relief from doctrinaire approaches which
begin with a statement of the statistician’s model and his prior beliefs about the
parameters of the model. In fact, the statistician always has to begin with a real-life
process and, hence, any model concerning this process (and, consequently, any prior
distribution on the parameters of such a model) must be regarded as very tentative.

Sections 4 and 5 focus on some impoftant facts often overlooked by Bayesian
statisticians. In Section 4 it is pointed out that probabilities associated with choosing
between models may be quite sensitive to the choice of prior distributions within
models. Because inference within a model is insensitive to prior information when
samples are large, it is easy to think that in large samples the prior doesn’t matter. But
the thing which makes the prior not matter is the likelihood, which is completely
model-based. The example presented in Section 4 shows that, in situations where the
prior mean within the binomial model £ is very diftferent from the sample mean p, the
information in the data which is ancillary to the binomial model (which is what we need
for testing the model) may not swamp out the prior in moderately large samples.

In Section 10, which deals with problems involving hyperparameters, the method
of maximizing the marginal likelihood is advocated as an alternative to specifying
“‘complicated and possibly confusing’ prior distributions on the hyperparameters.
Whereas in many problems maximizing the marginal likelihood gives virtually the same
answer as integrating over a locally uninformative prior on the hyperparameters, no
justification has been given that the former procedure is anything but a convenient
approximation to the latter. In some cases, the approximation may be poor. For
example, in the normal one-way classification shrunken estimates of the group means
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toward the grand mean may be obtained by putting a conjugate prior on the
exchangeable group means and estimating the hyperparameters in this prior by
maximum likelihood (Stroud, 1980). But if the number of groups is small (say 3 or 4),
this procedure shrinks too much toward the grand mean because the likelihood
function of the between-within variance ratio is skewed, causing the mode to
underestimate this variance ratio. A similar problem exists if one uses a prior on the
hyperparameters but then resorts” to substituting the posterior modal values of
hyperparameters, rather than integrating over them. In such cases where skewness
causes a problem one should either integrate out the hyperparameters or devise a
technique for suitably adjusting the modal estimates in the direction of the skewness.

REPLY TO THE DISCUSSION

T. LEONARD (University of Warwick):

Many thanks to the discussants for their helpful contributions which seem to
provide a good representation of current Bayesian thought about the area of Statistics.
Since the conference Dennis Lindley and 1 have corresponded in detail about the
axioms, and this has helped us to clarity our ideas in this area.

A positive contribution of this correspondence was an indication that my Axiom
5a is not needed in the very strictest mathematical sense, as De Groot utilizes the
mathematical properties of random variables to their fullest extent (they are A-
measurable functions from the parameter space to the real line). However, if the
outcomes of the auxiliary experiment were simply regarded as numerical values, then
my Axiom Sa would be needed to link the auxiliary experiment with the parameter
space: it is this interpretation which the probability assessor would utilize when actually
carrying out the suggested procedure. Moreover, my axioms 5 and 5a are equivalent
mathematically to the combination of De Groot’s Axiom 5, and his assumption of A-
measurability of the random variable. Therefore my comments are relevant whichever
interpretation is used; it is my firm understanding that the combination of the first four
axioms with the assumptions surrounding the fifth axiom should be viewed in an
inductive sense as virtually as strong as the final result. I would however like to thank
Dennis for indicating the desirability of clarification of this mathematical point.

It still seems completely obvious to me that the axioms are not really proving
much, but simply describing a way of thinking. During my correspondence with Dennis
he suggested various sensible changes to the axioms, but despite about half-a-dozen
intuitively appealing suggestions at least one of the axioms always turned out upon
close scrutiny to be similar in strength to De Groot’s fifth axiom. It is interesting that
whilst recently teaching utility theory, I decided to play the role of a formal Bayesian,
but this approach was quickly shown to be deficient by a series of simple and
unprompted questions from my students; these were much on the same lines as the
points I have raised here about subjective probability.

Dennis seems to have dodged the real issue - my main point is that coherence is less
important and even constrictive in practical situations where the objective is to extract
real-life conclusions from a data set. Probably we Bayesians should leave our ivory
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towers once in a while and work in a Statistical Laboratory analyzing real data. We
might then learn that modelling is the really important part of statistics; analyses which
proceed conditionally upon the choice of model are enjoyable but do not provide the
complete answer.

I would like to thank Tony O’Hagan for his comments. I don’t think that my
IMP’s are an over-theoretisation - in fact there’re not really a theoretisation at all!
They are just a way of thinking, or perhaps a term to describe what most of us have
been doing anyway. My point is that thinking about the problem in order to extract a
model or a conclusion is much more important than trying to be formally coherent.
Tony’s comments on the sensitivity problem are helpful and interesting. His work on
outlier behaviour would be useful if it were possible to find families of distributions
with thick tails which are both meaningful and analytically tractable, for example, in
multivariate situations.

I’'m a bit confused by Simon French’s comments. I didn’t use the conditional
probability axiom because I was just discussing straight-forward probability. 1 think
however that my main points would extend to this situation.

Tom Stroud’s thinking seems to be on similar lines to my own - we should
probably form a clique of pragmatic Bayesians (this may be a good time to announce
the foundation of the Bayesian-Fisherian school of statistics!). It is possible to justify
estimating hyperparameters by their marginal likelihood estimates when the number of
first-stage parameters is greater than about ten, because the estimates will then
approximate the Bayes estimates under a wide range of loss functions. When the
dimensions are smaller the estimates are less precise but still fairly sensible. A more
sophisticated estimation procedure would in this case probably not be justified in view
of the small amount of information available about the hyperparameters.

Bill DuMouchel’s comments are very helpful and I’m glad that he supports the
main theme of my paper. I remain a bit pessimistic about a mixed model approach since
it would not be particularly meaningful or easy to check out each of the candidate
models against the data or to think in a lucid way about the complicated analysis
employed. It is interesting that he indicates that the binomial hypothesis testing
problem is similar to deciding whether a single observation could have a particular beta
distribution - this really supports my argument since it tells us that the standard
Bayesian procedure for this situation can’t properly distinguish between the two
hypotheses.

My distinction between probabilistic and predictive models is a practical one. For
many data sets the explanatory variables are extremely noisy so that it is virtually
impossible to find a least squares model via standard procedures like stepwise
regression, and therefore difficult to get reasonable numerical predictions of further
dependent variables. However the data may still be rich in a content of a probabilistic
nature, in the sense that they indicate how much the statistician should adjust his
probabilities about the dependent variables, in the light of knowledge of the
explanatory variables. In such circumstances, where we just can’t find a reasonable
least squares model, we can often still arrive at useful conclusions by modelling the
distributions of the important explanatory variables.

I am not arguing completely against the use of thick-tailed distributions, but

37
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simply saying that if we look at the data and think about the problem then we can
sometimes avoid this extra complication. In the example Bill discusses, I guess that
most of us would prefer a much smaller value for prob(X >4) than 0.01.

Adrian Smith feels that my implication that the axioms of coherence are

.tautologous is most peculiar. This is probably because, like Dennis, he is thinking

deductively rather than inductively - if we constrain ourselves to Bayesian formalism
then statements by more open and inductive thinkers will very often appear to be
peculiar. As I see it, if we look at the axioms and judge intuitively the strength of what
is being assumed, and next look inductively at the strength of the final result, then
the two appraisals will be extremely similar. Therefore the fact that the axioms
deductively imply the final result does not really give us much - it would be inductively
speaking just as reasonable to assume the final result to start off with, It’s a pity that
neither Dennis nor Adrian have taken this opportunity to look deeply enough at the
problem to be able to give a definitive answer to this point.

I can’t see how the likelihood principle follows from the axioms unless coherence
is also assumed across an n-dimensional sample space in order to justify the existence of
a sampling distribution - an extremely complicated assumption (don’t the sufficiency
principle and the very complex conditionality principle come into it as well?). The
assumption that we can marginalise subjective distributions is barely stronger than the
axioms that might be used to justify this procedure.

Further analyses are of course needed to justify statements like ‘‘superior practical
results’’, but I think that this has already been done - see for example the work by
Adrian and others on multi-parameter estimation, time series analysis, and categorical
data. I personally think that the Bayesian approach is ‘““much more reasonable’
because it is extremely natural to think in terms of probability distributions when
updating information about quantities of interest.

My thanks to Jim Dickey and Jay Kadane for their contributions. On the question
of discrimination methods versus regression analysis it is indeed much simpler in many
situations to model the distributions of the explanatory variables. Of course, one
should always choose the method which best suits the practical situation at hand.

I would finally like to say how much I enjoyed giving a paper in the same session as
Mel Novick. His practical implementation on CADA of my early marginalization work
on categorical data fits in well with the things I have been trying to say.

M.R. NOVICK (University of lowa):

The commentary provided by Professors Bernardo, Dickey, Du Mouchel and
French, are useful in themselves, but to me they have the added value of opening up for
discussion some topics that I might have covered in my original presentation, had time
and foresight permitted.

Professor Bernardo notes, with bated foil, that there may be no *‘‘coherent
justifications for using least-squares in order to force coherence among ... judgments’’.
He is, of course, correct. The only reply is that coherence, like virtue, can be absolute
only in contemplation and is more likely to be compelling as we examine the actions of
others rather than ourselves. Wisdom must guide us in knowing when small deficiencies
in coherence (and virtue) can be tolerated.
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The essence of Professor Dickey’s critique of our paper is summarized in his
question: ‘“What is it that justifies our thinking that isolated laboratory experiments
will yield findings of any importance in real-world applications?’’ Feelings of
inadequacy in my ability to contribute anything new to the discussion of that question
compel me to refer Professor Dickey to his biologist, chemist, physicist, psychologist,
et. al. friends, some of whom may be willing to take the time to instruct him on the
general decline in acceptance of the Kantian view of science and the acceptance since
the end of the Dark Ages of the value of laboratory experimentation. For my own part
I shall borrow Professor Bernardo’s bated foil and ask Professor Dickey, ‘‘What is it
that justifies Ais thinking that the mathematical derivations se presents us without any
empirical investigation of relevance, will provide us with useful methods of assessing
prior probabilities?’’ Perhaps Professor Dickey and I are both guilty of demanding a
higher level of virtue and coherence of others than of ourselves. For my part I speculate
that Professor Dickey’s work will be very useful but question the appropriateness of his
presupposition.

Professor Dickey, however, is not entirely off the mark. We have found that our
methods are ‘‘successful’’ only when we go to great lengths, in our laboratory, to
simulate practical decision problems. People do not carry around utility functions in
their heads and we ought not to view the assessment process simply as a psychological
measurement (psychometric) problem. However, we have also found that the nature of
the graphic display has significant influence on assessors responses and that the
anchoring effect can be reduced by the methods we propose. We also believe that
further refinements will be useful.

Professor Du Mouchel’s comments are more penetrating and require more
detailed response. It is true that human opinions can be very complicated. Part of that
complication is due to incoherence which, it is hoped, can be reduced through
computer interaction. It is also true that humans attempt to uncomplicate their
opinions and decision processes by the use of simplifying heuristics. Unfortunately
these heuristics ¢ypically introduce bias. Our goal is to uncomplicate human opinion by
providing alternative heuristics that avoid major biasing effects. This is not a simple
task and we make no claim of ‘‘complete’’ success. But if, in education, I had to choose
between decision-making with or without the prior probability, utility assessment, and
decision-making procedures now available on the Computer-Assisted Data Analysis
(CADA) Monitor I would certainly opt to use CADA.

With respect to Professor Du Mouchel’s question as to whether experiments could
be designed to test whether human opinions are too complicated to be represented by
simple probability distributions or utility functions, I would respond that I think rather
different experiments are necessary. I personally accept the notion that human opinion
is too complicated to be so modelled. The point, however, is that what we seek is not a
descriptive modelling of what human opinion /s, but a normative modelling of what a
particular human being’s opinion ‘‘ought’’ to be. The word ““ought’’ here has a special
meaning that must be made precise. A human being’s opinion ‘‘ought’’ to be internally
coherent and ought to be consistent with contemplated behavior. If contemplated
behavior is inconsistent no formal modelling with a probability distribution or utility
function is possible. Thus probability and utility assessment procedures do not involve



580

descriptive modelling. They involve a process that changes opinions in some way that
results in internal coherence without changing those aspects of contemplated behavior
that most clearly represent the person’s opinions regarding the real world.

I now respond to Professor Du Mouchel’s specific questions a) to d):

a) If states are not ordered we begin by ordering them.

b) All of our elicitation procedures require probability judgements
(fixed state as opposed to fixed probability). We believe that the direct
elicitation of utilities is deceptively easy but subject to a high degree of
artifactual bias.

¢) We have our intuition and some informed observation to suggest
benefit from the log-odds scale for the regression of probabilities. I have
very high personal probability that this is very much better than least-
squares in the original metric. However, I would think that somewhat less
weight on the extreme values might be useful. Dennis, Lindley and I have
often debated the relative benefits of log-odds and root inverse sine
transformations.

d) For most problems that we have adressed to date elicitations are
handled quickly, with perhaps 10% of subjects showing boredom,
fatigue, or uncorrectable incoherence. (For some this result may be
endemic to the laboratory context which remains somewhat artificial
despite our best efforts). The key to success with such methods is the
moderate realism of the established scenario and the smoothness of the
person/machine interaction. But our degree of success does also vary with
the complexity of the model. A nine point unidimensional utility
assessment is comfortable. A bivariate utility assessment is more difficult.
Higher dimensional assessment is currently beyond our ability. (We have
not been impressed by the mathematically convenient but largely
unrealistic assumptions that others have chosen to make). The
interrogation procedure for multiple linear regression originally
programmed following the Kadane et. al. suggestions proved inadequate.
However, Dr. James Chen of my staff has now produced an acceptable
program which is tolerated by keen investigators, but is still wearisome
for most users. Further improvements will need to be made.

Finally, let me adress Professor French’s useful queries. Professor Lindley and I
showed in our original paper that the value of P, effected U(6,) most with decreasing
effect for more distant values of #,. This is, I think, a desirable property, though
independence for i # n would be preferable.

Professor French’s second query gets to the heart of our methods and 1 am
grateful to him for raising the issue because 1 neglected this vital point in my
presentation. (I really ought not assume that everyone is familiar with our CADA
project). If I may borrow Professor French’s words, the primary function of elicitation
procedures on CADA is to help the ‘‘decision maker explore his preference belief
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structure, discover inconsistencies, think about them and then resolve them’. We
believe that this process is facilitated by conversational language computer interaction.
Descriptions of CADA are contained in my article on CADA in the International
Statistical Review, 1973, my article in the American Statistician in 1975 and a second
article in the American Statistician to appear in November, 1979.
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